
- 2025-01-10 17:03:33空气粒子测量
- 空气粒子测量是通过专门仪器对空气中悬浮粒子进行检测和计数的方法。它主要利用光散射、激光感应或显微镜观察等原理,实时监测空气中粒子的数量、大小及分布。该技术广泛应用于洁净室监测、空气质量评估、环境污染监测及工业卫生等领域,具有灵敏度高、测量准确及实时反馈等技术优势,为环境保护和健康风险评估提供了重要数据支持。
资源:13431个 浏览:10次展开
空气粒子测量相关内容
空气粒子测量资讯
-
- Palas®仪器如何满足计量院多样化监测需求?
- 计量院的颗粒物实验室负责对颗粒物监测仪、尘埃粒子计数器、凝聚核计数器CPC、气溶胶粒径谱仪开展计量标准、量值溯源。
-
- Palas®仪器如何满足计量院多样化监测需求?
- 计量院的颗粒物实验室负责对颗粒物监测仪、尘埃粒子计数器、凝聚核计数器CPC、气溶胶粒径谱仪开展计量标准、量值溯源。
空气粒子测量产品
产品名称
所在地
价格
供应商
咨询
- 尘埃粒子计数器 空气粒子数量大小检测
- 国内 山东
- 面议
-
青岛明成环保科技有限公司
售全国
- 我要询价 联系方式
- 新款PMTQ系列海绵空气透气率测量系统 PMTQ-A
- 国内 北京
- ¥12800
-
北京冠测精电仪器设备有限公司
售全国
- 我要询价 联系方式
- 美国METONE GT-526S手持式六通道粒子计数器空气粒子测试仪
- 国外 美洲
- 面议
-
鑫勃环境工程技术(北京)有限公司
售全国
- 我要询价 联系方式
- 北廷测量 示踪粒子
- 国内 北京
- 面议
-
北廷测量技术(北京)有限公司
售全国
- 我要询价 联系方式
- 北廷测量 粒子发生器PIVpart
- 国内 北京
- 面议
-
北廷测量技术(北京)有限公司
售全国
- 我要询价 联系方式
空气粒子测量问答
- 2023-05-10 14:28:08纳米银粒子观察用什么显微镜?
- 纳米银粒子很小,才几十纳米,通常会用到电子显微镜。不过,此次,香港中文大学老师只需要观察纳米银颗粒分布,不需要清晰观察细节,同时后期需升级荧光观察,因此深圳区域工程师推荐了金相显微镜MJ43BD搭配2000万像素显微镜相机MDX10,现场演示了金相样品效果,获得用户认可。 金相显微镜MJ43,配备半复消色差的明暗场物镜和六孔转盘式落射模块,具备良好的成像质量和扩展能力,对于功能和扩展要求更高的老师很适合,标配支持明场和暗场观察,根据工业和材料学的不同应用,还能通过模块化组合,实现偏光、荧光、DIC等观察方式。金相显微镜MJ43可应用于半导体、FPD、电路板、金属材料等制造领域,适用于教学及研究方面您若对金相显微镜感兴趣或存在疑问,欢迎与我们联系,我们将竭诚为您服务!免责声明本站无法鉴别所上传图片、字体或文字内容的版权,如无意中侵犯了哪个权利人的知识产权,请来信或来电告之,本站将立即予以删除,谢谢。来源:https://www.mshot.com/article/1741.html
142人看过
- 2025-02-11 12:30:15牛奶分析仪怎么排空气
- 牛奶分析仪怎么排空气:确保测量与稳定性能 在牛奶质量检测过程中,牛奶分析仪是不可或缺的工具。在设备使用过程中,如何排除仪器内的空气,确保测量的性与设备的稳定性,成为了技术人员必须掌握的关键操作。本文将详细解析牛奶分析仪的排空气方法,并探讨其对分析仪性能的重要影响。通过了解这一过程,您将能更有效地使用牛奶分析仪,确保每次测量结果的准确无误。 我们需要明确牛奶分析仪在使用过程中为何需要排空气。分析仪的工作原理通常依赖于液体流量、温度以及密度等参数的精确测量,而空气的存在会干扰这些数据的准确性。空气泡可能导致液体流动不均,影响测量探头的工作,进而使终结果偏差。因此,定期排除空气,不仅能避免测量误差,还能延长设备使用寿命。 我们讨论具体的排空气方法。在大多数牛奶分析仪中,排空气的步骤可以通过手动操作或自动程序来完成。对于手动操作,首先应关闭设备并确保仪器处于安全状态。然后,打开仪器的排气阀或泄气阀,缓慢排出系统内的空气。使用者可以通过观察仪器界面上的气泡检测功能,确保气泡完全排出。如果是自动排气系统,操作则相对简单,只需按照设备的使用说明,选择对应的排空气选项,仪器会自动完成排气过程。 除了基本的排气操作,定期检查和维护仪器的密封性也是非常重要的。如果设备出现密封不良或漏气的情况,空气可能会不断进入系统,导致反复出现排空气的问题。因此,维护仪器的密封性,及时更换老化部件,能有效减少空气进入,从根本上解决排气困难。 在操作过程中,应特别注意液体和空气的接触点,避免外界因素影响到排气效果。对气泡的检查非常重要,通常需要在排气完成后,进行数次观察,确保液体管道内没有残留的空气。对于一些高级型号的牛奶分析仪,还配备了智能检测功能,能够实时监测空气泡的存在,并自动提示用户进行排气。 牛奶分析仪的排空气操作对于确保测量结果的精确度至关重要。通过合理的操作步骤和定期的设备检查,能够有效防止空气对分析结果的干扰,确保每一次的检测都能提供可靠的数据。在实际操作中,技术人员应根据设备的类型和使用环境,灵活调整排气策略,以提高仪器的稳定性与长期运行的可靠性。
22人看过
- 2025-04-30 13:15:19平板硫化机怎么排空气
- 平板硫化机怎么排空气:确保硫化质量的关键步骤 在平板硫化机的使用过程中,空气排除是确保硫化质量和效率的关键步骤。排空气的过程对于提高硫化效果、降低气泡及其他缺陷的出现具有至关重要的作用。本文将深入探讨平板硫化机排空气的具体方法、操作技巧及其在实际生产中的重要性,帮助相关人员更好地理解如何通过有效的空气排除技术,优化硫化效果,确保产品质量。 1. 平板硫化机排空气的重要性 在平板硫化过程中,原材料的加热与压缩会引发空气或气体的形成,尤其是在高温高压条件下。若未能及时有效地排除这些气体,可能会导致产品表面出现气泡、缺陷或其他质量问题。尤其对于橡胶、塑料等高要求的硫化工艺来说,气体未能有效排出不仅影响外观质量,还可能降低材料的耐久性和性能。因此,排空气不仅是一个工艺步骤,更是确保产品合格的基础。 2. 平板硫化机排空气的方法 排空气的方法有很多,具体采用何种方法通常取决于硫化机的设计与使用环境。以下是常见的几种排空气方式: 2.1. 利用真空排气 在硫化机的操作过程中,先通过真空泵将工作室内的空气抽走,利用负压状态排除物料中的空气。真空排气方法能够有效地防止气泡的形成,确保物料在硫化过程中均匀受热,从而提高硫化质量。真空泵的选择与调节要根据硫化机的规模和物料特性来确定。 2.2. 借助自动排气系统 现代平板硫化机多配备有自动排气系统,该系统通过压力传感器监测硫化室内的气体变化,并根据实时数据自动调整排气量。自动排气系统可以在整个硫化过程中保持合适的排气状态,避免因人为操作不当而导致空气排除不彻底,提升生产效率。 2.3. 倾斜式排气设计 有些平板硫化机设计上采用了倾斜式硫化室结构,利用重力和加压作用帮助排除物料中的空气。该设计能够有效减少操作过程中的气体滞留,提高排气效率,避免空气滞留引发的质量问题。 2.4. 人工辅助排气 对于一些特殊情况或设备故障,人工辅助排气也能起到一定的作用。通过手动调节排气阀门、利用气压表等工具,操作者可以根据实际情况调整排气强度,以确保设备处于佳工作状态。 3. 排气过程中的常见问题及解决方案 在排空气的过程中,可能会遇到一些常见问题,比如气泡无法完全去除或排气不畅。以下是一些常见问题的原因及解决方案: 3.1. 排气不畅 如果排气不畅,可能是由于排气阀门损坏或排气管道堵塞所致。此时需要检查排气系统的各个环节,确保阀门开启正常、管道无阻塞,必要时进行清理或更换。 3.2. 物料气泡未完全去除 如果硫化过程中仍然出现气泡,可能是物料未充分加热或加热时间不足。此时需要调整加热温度或延长加热时间,确保物料在硫化过程中能够均匀加热,从而彻底排除空气。 3.3. 排气时间不当 排气时间过短可能导致空气未能完全排出,过长则可能影响生产效率。合理的排气时间应根据物料特性、硫化机的配置以及生产需求来设定。 4. 结论 平板硫化机的排空气操作在硫化过程中扮演着至关重要的角色。有效的排气不仅能提高硫化质量,还能显著提升生产效率,降低故障率。通过采取合适的排气方法、定期维护排气系统并优化操作流程,企业能够确保生产出高质量的硫化产品。因此,掌握科学的排气技术是每一位生产人员的必备技能,也是提高整体生产水平的关键。
15人看过
- 2025-04-18 18:00:17热重分析仪可以通空气么
- 热重分析仪可以通空气么? 在材料分析领域,热重分析仪(TGA)是一种常用的分析工具,它通过测量物质在加热过程中质量的变化来研究物质的热稳定性、组成以及分解特性。许多使用者可能会疑问,热重分析仪是否可以在空气环境下进行操作,或者说它是否能够在空气中进行热重测试。本文将探讨这个问题,分析热重分析仪在空气中工作的可行性及其影响,以便为相关领域的科研人员和工程师提供专业参考。 热重分析仪的工作原理与环境要求 热重分析仪的基本工作原理是通过对样品进行加热,并监测其在不同温度下的质量变化。随着温度的升高,某些化学物质会发生挥发、分解或者氧化反应,这些过程会导致样品的质量发生变化。热重分析仪主要通过高精度的电子天平实时记录这些变化,并与温度变化数据进行对比分析,从而获得样品的热性能和分解行为。 在实际操作过程中,热重分析仪的环境条件对测试结果的影响是显著的。热重分析一般可以在不同的气氛中进行,包括空气、氮气、氧气、氩气等。不同的气氛环境可能会导致样品的分解或氧化速率发生显著变化,从而影响终的实验结果。 空气环境下的热重分析 空气作为一种常见的气氛环境,在热重分析中的使用是非常普遍的。空气中含有大约21%的氧气,这对于许多样品,尤其是有机材料和含氧化合物的样品,在加热过程中会发生氧化反应。因此,许多热重分析实验都会在空气气氛下进行,以模拟材料在常规环境下的行为。 使用空气环境进行热重分析时,需要注意几个关键因素。空气的氧气成分可能会导致一些易氧化的物质在加热过程中发生快速的质量变化,可能会比在惰性气体中观察到的结果更加剧烈。空气中的湿气也可能对某些样品产生影响,导致数据的波动。因此,在进行空气环境下的热重分析时,必须考虑这些因素对样品的影响。 空气对热重分析结果的影响 空气中的氧气和水蒸气对热重分析的影响不可忽视。氧气可能会加速某些材料的氧化反应,特别是在高温下,氧气的存在可能会导致样品表面发生氧化或者分解,从而导致质量的迅速降低。对于热稳定性较差的材料,氧化反应会提前发生,从而影响实验的结果。 空气中的水蒸气也是一个潜在的干扰因素,尤其是在高湿度的环境下。水分可能会与样品中的某些成分发生反应,从而影响样品的质量变化曲线,尤其是对于某些吸湿性较强的物质。 结论 热重分析仪在空气环境下进行测试是完全可行的,且在许多实际应用中具有重要意义。在使用空气环境进行测试时,研究人员应当充分考虑氧气和水蒸气对样品的潜在影响,特别是对于那些容易氧化或者吸湿的材料。因此,为了得到准确的测试数据,必须在实验设计时仔细选择气氛环境,并确保分析过程中的环境稳定性。
33人看过
- 2023-01-04 16:50:04【AM-AN-22025A】标准粒子在光散射研究中的应用
- 全文共1834字,阅读大约需要6分钟关键词:标准粒子;米氏散射光的散射(scattering of light)是指光通过不均匀介质时一部分光偏离原方向传播的现象。偏离原方向的光称为散射光。散射光频率不发生改变的有瑞利散射、米氏散射和大粒子散射;频率发生改变的有拉曼散射、布里渊散射和康普顿散射等。而标准粒子在光散射研究领域一般研究的是粒子的瑞利散射、米氏散射和大粒子散射,这三种散射划分是根据入射光λ与散射粒子的直径d之间的比例大小来确定的:①当散射粒子的直径d与入射光波长λ之比(d/λ)很小,即数量级显著小于0.1 时,则属于瑞利散射,散射光强与波长的关系符合瑞利散射定律,即散射光强与入射光的波长四次方成反比,与粒径的六次方成正比。②当散射粒子粒径与光波长可以比拟(d/λ的数量级为0.1~10)时,随着粒子直径的增大,散射光强与波长的依赖关系逐渐减弱,而且散射光强随波长的变化出现起伏,这种起伏的幅度也随着比值d/λ的增大而逐渐减少,这种散射称为米氏散射。③当粒子足够大时(d/λ>10),散射光强基本上与波长没有关系,这种粒子的散射称为大粒子散射,也可称之为衍射散射(菲涅尔衍射与夫琅禾费衍射)。瑞利散射可以说是米氏散射理论模型在小粒子端的近似形式,而衍射散射也可以说是米氏散射理论模型在大粒子端的近似形式,接下来我们将详细了解标准粒子应用于米氏散射理论对其光散射特性研究中,入射光波长、标粒直径以及入射光偏振角对散射光强的影响。1入射光波长对散射光强分布的影响图1.1 是相对折射率m=1.589/1.333,标准粒子直径d=2μm,入射光偏振角φ=45°时,由Mie散射理论及其他相关公式编程计算得到的散射光强与散射角之间的变化关系曲线。对于直径为2μm的聚苯乙烯微球在水中的散射情况,入射光偏振角为45°时,随着入射波长λ的增大,散射光强由主要集中在前向小角度内(波长λ为0.2um时散射光强主要集中在10°散射角内)逐渐变为集中在前向稍大角度内(波长λ为0.8um时散射光强主要集中在30°散射角内),若继续增大波长,散射光强集中的角度也将继续增大。从图1.1可以看出,波长较短时散射光强主要集中在前向小角度内,并且波长越短散射光强集中的角度越小。图1.1:当m=1.589/1.333,d=2μm,φ=45°时,对应于不同的波长,散射光强与散射角间的关系曲线。聚苯乙烯微球直径对散射光强分布的影响图2.1是用可见波段中的0.65μm波长的入射光,在偏振角为45°时,聚苯乙烯微球在水中的散射光强与散射角的变化关系曲线。由图可以看出,微粒直径越大散射光强越集中分布在前向小角度内,粒径大于2μm的粒子的散射光强主要集中在前向散射角约20°内,因此在此种条件下收集前向小角度的散射光强即可获得粒子的较好信息。图2.2是入射光波长为6μm,偏振角45°时,聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可知,所用波长较大时,较大粒子的散射光强不再集中在前向小角度内而是集中的角度逐渐变大,例如粒径大于8μm的粒子的散射光强主要集中在前向散射角约40°内。图2.1:当m=1.589/1.333, λ=0.65μm, φ=45°时,对应于不同的微粒直径,散射光强与散射角间的关系曲线。 图2.2:当m=1.589, λ=6μm, φ=45°时,对应于不同的粒径,散射光强与散射角间的变化曲线入射光偏振角对散射光强分布的影响图3.1是入射光波长为0.65μm,直径为0.2μm的聚苯乙烯微球在空气中的散射光强与散射角的变化关系曲线。由图可以看出,此种情况下入射光的偏振角不同散射光强与散射角间的关系曲线有很大变化,散射光强分布比较分散,说明此时散射光强的角分布与偏振光的偏振角有关。图3.1 当m=1.589, λ=0.65μm, φ=0.2μm时,对应于不同的偏振角,散射光强与散射角间的变化曲线。结论以上为应用米氏散射理论针对聚苯乙烯微球标准粒子的光散射性质进行的分析,得出以下结论:(1)波长较短时散射光强主要集中分布在前向小角度内,并且波长越短散射光强集中分布的角度越小。收集前向小角度的散射光可大致反映粒子散射信息。(2)进行聚苯乙烯微球标粒散射方面的研究时,应该选择可见光波段中波长较短的作为光源,这样既可以得到较好的粒子散射信息,又可以避免光源对人体造成伤害。(3)粒子直径较大时散射光强主要集中分布在前向小角度内,并且粒子直径越大散射光强越集中分布在小角度内;若所用波长较大时,较大粒子的散射光强不再集中分布在前向小角度内而是集中分布的角度逐渐变大。参考资料1.李建立.基于光散射的微粒检测.烟台大学理学院硕士论文,2009:22-25.
158人看过
- 公司新闻
- 微量试剂分液的自动化解决方案
- D200杜马斯定氮仪
- 空气粒子测量
- QCL激光器
- 柔性智能器件
- 近红外光谱分析技术
- 材料显微分析
- 粉末X射线衍生
- 汽车罐车油气回收系统
- WinRoots系统
- SMPS扫描电迁移率粒径谱仪
- 集成式自动进样器
- 多氟烷基化合物
- 硅漂移探测器
- 机器视觉系列
- 新产品六轴并联机器人的应用
- 网络研讨会
- CMOS传感器
- 测试防晒化妆品吸光度
- 光电分析仪器
- 紫外线老化试验箱
- PIV测量原理
- 原子吸收耗材
- 瑞士万通离子色谱系统
- 单颗粒气溶胶粒径分布光谱仪
- 饮用水水质
- 次性注射器来取水样品
- 天美实验室设备
- 化工冶金行业装备技术
- 司法毒物分析检测技术专题
- 元素面扫 Mapping
- 动态光散射测量技术
- 智能化检测
- 毛细管熔点
- 离子淌度质谱(IMS)
- SF40A天平打印机