- 2025-03-28 15:24:55原子力学及显微成像设备
- 原子力学及显微成像设备是集原子级力学测量与高分辨率显微成像于一体的尖端科学仪器。它利用扫描隧道显微镜(STM)、原子力显微镜(AFM)等技术,实现对物质表面原子级分辨率的成像,同时测量原子间的相互作用力。该设备广泛应用于材料科学、纳米技术、生物医学等领域,助力科学家在原子尺度上探索物质的性质与行为,为新材料设计与性能优化提供关键数据支持。
资源:15336个 浏览:41次展开
原子力学及显微成像设备相关内容
原子力学及显微成像设备资讯
-
- 预算50万元 哈尔滨工程大学 采购老化原子力学及显微成像设备
- 哈尔滨工程大学老化原子力学及显微成像设备采购项目 招标项目的潜在投标人应在按本公告第三部分规定方式获取招标文件,并于2025年04月07日 14点00分(北京时间)前递交投标文件。
原子力学及显微成像设备产品
产品名称
所在地
价格
供应商
咨询

- 时间分辨荧光共聚焦显微成像及光谱系统
- 国外 欧洲
- 面议
-
武汉东隆科技有限公司
售全国
- 我要询价 联系方式

- MCL 原子力学音叉
- 国外 美洲
- 面议
-
北京欧兰科技发展有限公司
售全国
- 我要询价 联系方式

- MCL 原子力学音叉
- 国外 美洲
- 面议
-
北京欧兰科技发展有限公司
售全国
- 我要询价 联系方式

- 自动化显微成像模组|zolix
- 国内 北京
- 面议
-
北京卓立汉光仪器有限公司
售全国
- 我要询价 联系方式

- 等离子增强型原子层沉积设备(ALD)- TFS200
- 国内 台湾
- 面议
-
似空科学仪器(上海)有限公司
售全国
- 我要询价 联系方式
原子力学及显微成像设备问答
- 2023-07-06 15:28:28高低温试验箱:设备构成及工作原理
- 高低温试验箱是一种重要的环境试验设备,主要用于模拟产品在使用环境中可能遇到的温度变化,以测试产品的耐候性和稳定性。上海和晟 HS系列 高低温试验箱高低温试验箱具有以下特点:能够模拟产品在使用环境中可能遇到的温度变化,测试产品的耐候性和稳定性;具有高温、低温、湿度等多种测试模式,可满足不同用户的测试需求;能够进行快速温度变化试验,以模拟产品在使用过程中可能遇到的温度突变情况;具有精准的温度控制和数据记录功能,确保测试结果的准确性和可靠性。高低温试验箱的工作原理主要基于制冷/制热循环和温度控制。通过制冷剂的循环流动,实现箱内温度的降低;同时,通过加热装置的启动,实现箱内温度的升高。此外,试验箱还具有精准的温度控制和数据记录功能,以确保测试结果的准确性和可靠性。高低温试验箱的设备构成主要包括箱体、控制系统和传感器等。箱体主要由不锈钢材料制成,具有优良的耐腐蚀性能;控制系统主要用于设置和显示试验箱内的温度,同时还能够控制制冷剂和加热装置的工作;传感器则用于实时监测和记录试验箱内的温度变化。使用高低温试验箱时,用户需要根据实际需求进行设置。首先,需要根据测试产品的特性和使用环境选择相应的模式,如高温、低温、湿度等;其次,需要根据测试要求设置相应的温度,并启动制冷或加热装置;最后,需要观察和记录试验箱内的温度变化情况,以及产品的耐候性和稳定性表现。高低温试验箱具有以下优缺点:优点:能够模拟产品在使用环境中可能遇到的温度变化,测试产品的耐候性和稳定性;具有多种测试模式,可满足不同用户的测试需求;能够进行快速温度变化试验,以模拟产品在使用过程中可能遇到的温度突变情况;具有精准的温度控制和数据记录功能,确保测试结果的准确性和可靠性。缺点:设备价格较高,对于小型企业而言可能存在一定的经济压力;需要定期维护和保养,增加了使用成本;对于某些特殊产品而言,可能需要更复杂的测试模式和条件,试验箱无法满足其需求。根据以上优缺点分析,我们可以得出以下选购建议:根据实际需求选择合适的试验箱型号和品牌,以满足测试需求和经济性要求;考虑试验箱的易用性和可靠性,应选择操作简单、易于维护和保养的设备;应注意设备的精度和稳定性,以确保测试结果的准确性和可靠性;在购买前应详细了解设备的保修和维护政策,以便在后期使用过程中遇到问题时能够得到及时解决。总之,高低温试验箱是一种重要的环境试验设备,对于评估产品的耐候性和稳定性具有重要作用。在选购和使用过程中,需要根据实际需求和经济性要求进行综合考虑,选择适合自己的设备型号和品牌。同时,在使用过程中应遵循设备操作规范和保养要求,以确保测试结果的准确性和可靠性。
345人看过
- 2022-09-21 10:47:13明美荧光显微成像解决方案
- (1)医院真菌、妇科等常规荧光检测推荐:MF52-N/MF31+普通显微镜相机MSX1/MC50-S/MS60/MD50等Ø 数显LED荧光模块,可定制的单色或三色激发,推拉式切换,即开即用Ø 高数值孔径荧光物镜,高清晰度与高荧光透过率Ø 可拍摄数字图片,方便出具报告,可合成多色荧光图像 (2)高校、研究所等科研研究,医院癌症复核等高要求检测推荐:MF53-N/MF43-N + MG100/MG120 + 高灵敏度相机MC50-S/MS23/MSH12Ø 研究级荧光显微镜机身,具备更好的荧光效果和更强的扩展性能,应对各种需求Ø 6孔转盘式荧光附件,可按需自主选择激发块,实现对多种荧光染料观测Ø 可定制双通等特殊滤光片组,实现效率更高的FISH等观察应用需求Ø LED激发光源,大功率宽光谱激发效果好,即开即用使用便捷,寿命长性价比高Ø 高灵敏度相机,效率更高得实时反馈动态图像,搭配软件可实现FISH等应用 (4)四家品牌普通显微镜升级荧光观察推荐:数显荧光模块,或批量定制荧光模块Ø 可适配四、品牌大部分无限远光学显微镜,高性价比升级荧光观察Ø 数显屏幕,直观显示当前波段和亮度,方便定量分析Ø 内置LED荧光光源,可选单色或BGU等三色激发,可选电动切换或四色激发(5)四家品牌荧光显微镜升级LED荧光光源或定制荧光激发块 推荐:宽光谱大功率荧光光源MG-120,四通道光源MG-120Ø 可匹配四家品牌主流荧光显微镜,覆盖可见光激发光谱,激发效果稳定Ø 触屏控制器,直观易用的操作体验,可加入人走灯灭等智能功能Ø 寿命长,即开即用,1个LED光源顶50个汞灯,无需预热Ø 光强调节高度线性,MG-120支持软件触发和TTL电平脉冲模式触发来源:https://www.mshot.com/article/1527.html
251人看过
- 2025-09-30 17:00:20微波等离子体原子发射光谱仪是什么
- 这篇文章聚焦微波等离子体原子发射光谱仪(MP-AES),从原理、优势与局限、典型应用场景以及方法开发要点出发,帮助读者全面理解 MP-AES 在环境、食品、金属分析等领域的实际价值。文章坚持以专业视角阐述,避免无关性推理,旨在为实验室选型与方法建立提供清晰指导。 微波等离子体原子发射光谱仪利用微波能激发的等离子体作为分析源,使样品中的元素在高温下发射特征光谱线。相比传统等离子体源,MP-AES 常以空气或氮气为载体,运行成本较低、气体需求更灵活,适合日常快速定量分析。光谱检测通过高分辨率光学系统捕捉各元素的特征线,再结合仪器内置或外部校准实现定量。 与 ICP-OES 相比,MP-AES 在成本、易维护和对复杂基质的适应性方面具有明显优势,但灵敏度与线性范围在某些元素上可能不及高端等离子体设备,因此在方法开发阶段需关注基质效应、线性区间及内标策略。MP-AES 的多元素分析能力通常覆盖常见金属与部分非金属元素,适用于水、土壤、食品、合金等样品的快速筛选与定量。 仪器组成方面,MP-AES 通常包括微波等离子体腔、燃料与载气系统、样品进样单元、光学检测系统以及数据分析模块。样品前处理以可控的消解或直接进样为主,关键在于制样的一致性与基质匹配。方法开发时应关注标准曲线的建立、内标的选取、基质效应的校正以及检测限的评估。 在数据处理与质控方面,建立准确的校准模型、定期使用质控物质、并进行方法的再现性评估与不确定度分析,是确保分析结果可靠性的核心。日常运行中应注意气源质量、耗材一致性、清洗与维护周期,避免因器件沉积或光路污染影响灵敏度与稳定性。 未来发展趋势显示,MP-AES 正朝着更小型化、自动化与智能化方向演进,同时与便携分析、现场快速检测相结合的应用场景在增加。综合来看,微波等离子体原子发射光谱仪以其成本效益、操作简便与较强适用性的组合,在元素分析领域仍然具备重要地位,能够为环境监测、产业分析及质量控制提供稳定的技术支撑。专业应用中,结合合适的样品制备、校准与质控体系,MP-AES 能实现可靠的数据输出。
72人看过
- 2022-11-23 10:51:20免疫荧光显微成像详解(上)——免疫荧光原理、步骤
- 前言免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术,它是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。直接法将标记的特异性荧光抗体,直接加在抗原标本上,经一定的温度和时间的染色,用水洗去未参加反应的多余荧光抗体,室温下干燥后封片、镜检。间接法如检查未知抗原,先用已知未标记的特异抗体(第一抗体)与抗原标本进行反应,用水洗去未反应的抗体,再用标记的抗抗体(第二抗体)与抗原标本反应,使之形成抗体—抗原—抗体复合物,再用水洗去未反应的标记抗体,干燥、封片后镜检。如果检查未知抗体,则表明抗原标本是已知的,待检血清为第一抗体,其它步骤的抗原检查相同。标记的抗抗体是抗球蛋白抗体,同于血清球蛋白有种的特异性,如免疫抗鸡血清球蛋白只对鸡的球蛋白发生反应,因此,制备标记抗体适用于任何抗原的诊断。一、实验步骤免疫荧光实验的主要步骤包括 样片制备、固定及通透(或称为透化)、封闭、抗体孵育、封片及荧光检测等。1、 样品准备对于单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过(70%乙醇中浸泡)的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片即可,操作过程要小心,防止细胞脱片。对于悬浮生长细胞,有两种方式,一种是取对数生长细胞,制备细胞片或直接制备细胞涂片,把细胞片浸入封闭液中固定,封闭后滴加一抗和二抗孵育;另一种是先在悬浮液中进行固定和染色,离心洗脱后,用移液管移至盒式玻片进行后续抗体孵育。对于冰冻切片制备,建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。组织一定要冷冻适度,切片时选用干净锋利的刀片,防止裂片和脱片。对于石蜡切片的制备,要先进行脱蜡和抗原修复的处理。2、固定做好切片并风干后立即用合适的固定液(固定液包括有机溶剂和交联剂,其选择取决于抗原的性质及所用抗体的特性)进行固定,尤其要较长时间保存的白片,一定要及时固定和适当保存。固定时间则取决于固定组织切片的大小和类型,对大多数组织,18-24h即可,而细胞的固定时间较短。3、通透针对胞内抗原,使用0.5% Triton X-100或丙酮等通透剂进行通透,这一步的目的是使抗体进入胞内。4、封闭为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用封闭液(一般包括与二抗同一来源的血清、BSA或者羊血清)封闭,减弱背景着色。封闭开始后,要注意样品的保湿,避免样品干燥,否则极易产生较高的背景。5、一抗孵育一抗孵育温度一般分为:4℃、室温、37℃,其中4℃效果更佳;孵育时间与温度、抗体浓度有关,一般37℃孵育1-2h,4℃过夜(从冰箱拿出后37℃复温45min)。具体条件还要根据样品、稀释液等条件进行摸索尝试。6、荧光二抗孵育荧光二抗孵育一般在室温或37℃孵育30min-1h,该过程必须在避光环境下进行,防止荧光淬灭。荧光素标记的二抗随着保存时间的延长,可能会有大量的游离荧光素残留,需要注意配制时采用小包装并进行适当的离心。7、复染一般采用DAPI进行复染,目的是形成细胞轮廓,从而对目标蛋白进行定位。8、封片为了长期保存,我们需要对样本进行封片,用吸水纸吸干爬片上的液体,一般用缓冲甘油等或专门的抗荧光淬灭的封片液。9、 荧光观察有条件的话立即用荧光显微镜观察拍照,若不能及时拍照,也要做好封片和封固,保持避光和湿度。荧光显微镜的成像能力对最终的结果也会造成很大的影响,好的荧光显微镜能够最大限度地收集荧光信号,并呈现高分辨率的图片,使细节更清楚,更易得到一张效果极佳的结果图。注意:切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。(1)单独冲洗,防止交叉反应造成污染;(2)温柔冲洗,防止切片的脱落。可使用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质;(4)PBS的PH和离子强度的使用和要求(建议PH在7.4-7.6,浓度是0.01M;中性及弱碱性条件有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)。根据上述步骤完成免疫荧光实验后,就需要进行荧光显微成像,得到我们想要的结果。选择一款操作简单、成像清晰、效果卓越的荧光显微镜进行观察拍照,才能轻松得到更为理想的结果图,达到事半功倍的效果。Echo Revolve正倒置一体荧光显微镜Echo Revolve正倒置一体荧光显微镜作为一款电动化、智能化的显微镜,具有以下优势:☑ 正倒置一体快速切换:切片、细胞观察随心切换,无惧任何耗材;☑ DHR数字降噪功能:极大地降低了背景噪音和荧光干扰,提高图像锐度,加深细节,得到分辨率更高的图片;☑ 强大的Z-Stacking功能:通过高精度电动化Z轴层扫来扩大景深,解决厚样本观察问题,提高图像分辨率;☑ 500MP单色相机:能够采集更多荧光信号,助力低荧光强度样本观察;☑ 多通道荧光自动拍摄叠加功能:可自动进行多通道成像的叠加,个性化选择查看/保存各通道的组合图像。
800人看过
- 2025-09-30 17:00:20微波等离子体原子发射光谱仪怎么分析
- 本文围绕微波等离子体原子发射光谱仪的分析过程展开,核心在于通过微波等离子体激发样品中的元素,并以发射光谱的特征线实现定性与定量分析。文章系统梳理从样品制备、仪器设置到数据处理的全流程,强调方法学要点、参数优化及结果的可靠性评估。 原理与系统构成:微波等离子体原子发射光谱仪以高频微波功率驱动等离子体,等离子体在激发样品的同时放射特征谱线。仪器通常包含微波功率源、等离子体腔、激发气氛、光学系统、分光与检测单元,以及计算机数据处理模块。借助高分辨率光谱仪和敏感探测器,能够在多元素范围内实现线性定量。 样品制备与前处理:MIP-AES对样品形态和基体的要求较高,常见步骤包括样品粉碎、消解或溶解、以及适当的稀释与基体匹配。需要建立合适的基体校正策略,避免粉尘、湿度、颗粒度等因素引入误差。内部标准物质的选用要贴合样品基体特征,以减少随机干扰。 谱线选择、干扰与校准:选择接近特征元素的谱线时,要兼顾灵敏度、背景噪声和可能的谱线重叠。背景扣除、相对强度修正和离子化效应校正是常用手段。建立内标或外标校准曲线,覆盖样品的工作范围;必要时使用标准加入法以克服基体效应。 数据处理与定量分析:通过拟合校准曲线实现定量,计算检测限和定量范围,评估线性相关性、回收率、相对标准偏差等指标。峰面积或峰强度的选取应一致,背景扣除要稳定。软件模块通常提供自动化处理、灵敏度分析和质控图表,帮助实验室快速评估结果。 方法验证与质控:方法学的有效性依赖严格的质控流程,包括每日的仪器自检、分析空白、标准品与样品的平行分析,以及控制样品的重复性和再现性测试。建立方法可追溯性,确保数据符合行业标准及法规要求。 应用领域与案例:微波等离子体原子发射光谱仪在环境监测、水体与土壤重金属分析、食品与饮料中的微量元素以及地质矿产样品的成分分析中具有优势。结合批量样品和快速检测需求,MIP-AES能实现较低成本的多元素分析,提升实验室效能。 优化要点与常见问题:改善灵敏度与线性区间可通过优化样品前处理、选用合适的基体稀释比和内标;降低背景与干扰则依赖光谱分辨率和背景扣除算法。仪器保养、气体纯度、腔体清洁等日常维护对稳定性影响显著,建议建立定期维护计划。 结论与展望:在准确性、可重复性和工作流效率之间取得平衡,是微波等离子体发射光谱分析的核心目标。通过标准化的操作规程和持续的参数优化,MIP-AES将继续在环境、食品和地质分析等领域发挥关键作用。
85人看过


