2025-01-21 09:35:14固态核磁共振法
固态核磁共振法是一种用于研究固体物质中原子核性质及其周围环境的技术。它利用核磁共振现象,通过施加射频脉冲使固体样品中的原子核发生共振,进而分析原子核的弛豫时间、化学位移等信息。该方法可提供固体物质的分子结构、动力学及相互作用等方面的详细数据,适用于多种材料的研究,如高分子、生物大分子、无机材料等。固态核磁共振法具有高分辨率、非破坏性等优点,是材料科学研究中的重要手段之一。

资源:12226个    浏览:71展开

固态核磁共振法相关内容

产品名称

所在地

价格

供应商

咨询

低场台式时域核磁共振分析仪
国内 江苏
面议
苏州纽迈分析仪器股份有限公司

售全国

我要询价 联系方式
固态法白酒气相色谱仪
国内 山东
面议
精分检测技术(济南)有限公司

售全国

我要询价 联系方式
固态法白酒气相色谱仪
国内 山东
面议
精分检测技术(济南)有限公司

售全国

我要询价 联系方式
固态法白酒气相色谱仪
国内 山东
面议
精分检测技术(济南)有限公司

售全国

我要询价 联系方式
固态法白酒气相色谱仪
国内 山东
面议
济南精测电子科技有限公司

售全国

我要询价 联系方式
2022-12-19 16:12:22巧克力脂肪含量的测定-低场核磁共振法
巧克力脂肪含量的测定-低场核磁共振法巧克力是一种高热量食品,很多人都喜欢吃巧克力,其中蛋白质含量偏低,脂肪含量偏高。虽然巧克力有不少好处,但是因为它的高热量可导致肥胖。巧克力中脂肪含量是衡量其质量的重要理化指标。目前,对于巧克力脂防含量测定的具体方法没有明确的规定。不同的检验方法得到的检验结果存在差异。常用的巧克力脂防含量的测定方法有:索氏抽提法、酸水解法、低场核磁共振法等。长期的实验工证明索氏抽提法和酸水解法对于巧克力制品中脂肪含量测定的结果与真实值相比都不甚理想。索氏抽提法巧克力脂肪含量的测定:索氏抽提法主要是用乙迷或石油醚等有机溶剂抽提后,蒸去溶剂所得的物质,除脂防外还含有色素、挥发油、蜡等物质,称为粗脂肪。此外,索氏抽提法不适用于含糖量过高的食品,因为,食品中的糖分会随着乙迷等溶剂被抽提到接收瓶中,致使测定值偏高。而巧克力制品正是含糖量较高的食品,在用索氏抽提法时会导致蕞后结果偏离真实值。一个重要的原因是巧克力制品中含有奶粉,其中的乳脂肪在抽提时不能被乙迷所溶解,这又造成结果的误差。酸水解法巧克力脂肪含量的测定:酸水解法适用于加工食品和结块的不溶性样品,以及不易除去水分的样品。其利用强酸破坏蛋白质,纤维素等,使脂肪游离出来,再用乙迷提取。选用此法时,强酸可以打破巧克力制品中乳脂球膜,使乳脂肪游离出来,称之为总脂肪。但是,由于巧克力制品中含糖量较高,同样也会影响检验结果。另外,酸水解法由于人为主观因素会带来“在吸取醚层时,因界面不清晰,导致吸得不完荃或吸出黑色水分的结果”,在蕞后挥散乙迷烘干后的蕞后测定值或多或少的偏离真实值,影响检验的准确度。低场核磁共振法巧克力脂肪含量的测定:低场核磁法是基于巧克力产品中脂肪含量与采集到的NMR信号强度成正比,通过将每克样品的NMR信号对应于脂肪含量进行定标,即可定量未知样品中的脂肪含量。使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的固相和液相(基质和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时固相的信号已经衰减为0,A2仅为油的信号,A2与样品的脂肪量成正比,从而进行定量测量。使用3~6个已知脂肪含量的样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。推荐仪器:PQ001系列低场核磁共振分析仪
258人看过
2022-11-25 17:32:20低场核磁共振法用于淀粉玻璃化转变温度研究
低场核磁共振法用于淀粉玻璃化转变温度研究淀粉不仅是食品中的重要的组成成分,而且也是有用的食品工业原料,应用用途十分的广泛。大家都知道,淀粉由直链淀粉和支链淀粉组成,直链淀粉为一条直链的结构,分子量较小,支链淀粉是高度分支,分子量通常较高。由于来自不同种植物的淀粉在结构,组成和分子状态方面的差异,来自不同的来源的淀粉具备各自的使用功能。食品的玻璃化转变可能会引起食品的货架寿命和质构等的改变,已成为当今的研究热点。玻璃化转变温度的这个概念目前被广泛的应用在食品科学的领域当中。玻璃化转变是一种二级相变,物质不会放出潜热,不发生相变,他的宏观上在物质的物理、电学、热及力学等其他性质上,表现出变化或者不连续性。当食品处在玻璃态时,食品的分子分散的速率就会减慢,产品的品质就会提高,然而,当食品发生了玻璃化转变之后,它的理化性质就会发生明显的改变。淀粉的玻璃化转变对机械性能的影响很大,如引起淀粉的质构特性和产品老化等重要影响。因此,研究淀粉的玻璃化转变温度是非常重要的。聚合物在比较低的温度下,分子的热运动所需要的能量就很低,只有分子中的链节、支链等比较小的运动单元可以运动,而链段和分子链处于被冻结的状态,聚合物在外界作用下只能发生微小的形变,这个时候聚合物表现出来的力学性质和玻璃相似,所以把这种状态叫做玻璃态。聚合物发生了玻璃化转变时的温度称为玻璃化转变温度(Tg)。当食品处在玻璃态的时候,受扩散控制的食品的品质变化的反应就会变得非常的缓慢,有的甚至不会发生。这时的食品的各个方面的性质就会非常的稳定,对于食品的保存和新鲜程度等品质的保持就十分有利。大部分的谷物类食品是以淀粉为原料的,如小吃、焙烤食品等。面包在储藏的过程会发生老化(硬化),严重影响面包的品质,淀粉结晶就是影响面包老化的重要因素。当储藏温度低于Tg时,淀粉就不会发生结晶,所以将面包在玻璃态时储藏,对yi制面包老化很有效。食品中的玻璃化转变会影响食品的货架寿命和质构等。低场核磁共振法测定玻璃化转变温度:NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃芳位、定量的研究样品。玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其zui低点,即为相转变点,所对应温度为Tg。
263人看过
2022-08-31 23:21:24短纤维含油率如何测量?低场核磁共振法
短纤维含油率如何测量?低场核磁共振法为什么要测定短纤维中的含油率?纤维所上的油剂通常是作润滑剂或抗静电剂使用的,但有时它也被用作纖维的杀菌剂、阻燃剂、着色剂等化学试剂的载体。油剂含量也是一个重要的质控参数,它直接决定着纤维是否能满足其使用要求。然而,含油率不匀的情况是化纤生产过程中发生率较高的问题。含油率低的纤维容易产生静电现象,含油率高的纤维则容易产生黏缠现象,两种情况都会严重影响纺织加工的正常进行。因此,准确地测定纤维的含油率对准确把握和控制上油量具有非常重要的意义。短纤维含油率的测试方法有哪些?现行标准GB/T 6504- -2008 《化学纤维含油率试验方法》规定的试验方法有萃取法(以下称为标准萃取法)、中性皂液洗涤法、光折射率法和核磁共振法。除此之外,中石化企业为了方便生产,开发了几种新的试验方法,包括快速萃取法”、原子吸收法、电导法、蒸馏水振荡法、紫外光谱法等,其方法是针对某类产品使用的试验方法。短纤维含油率测试方法的原理是什么?1、标准萃取法:标准萃取法的原理是利用油剂可溶解于特定的有机溶剂,将适当的有机溶剂通过脂肪抽出器把试样中的油剂萃取出来,再将溶剂蒸干,称量残留油剂的质量及试样质量,计算得出试样的含油率。2、中性皂液洗涤法:中性皂液洗涤法的原理是利用皂液与油剂相亲和的性质,在洗涤力的作用下,使试样上的油剂转移到皂液中,再根据试样洗涤前、后的质量变化,计算试样的含油率。3、光折射率法:光折射率法的原理是利用全反射临界角的测定方法来测定未知物质的折光率,并定量地分析溶液中的某些成分,检验物质的纯度””。4:低场核磁共振法:核磁共振法的原理是利用核磁共振波谱法向纤维样品发射脉冲磁场,当磁场取消时,检测试样的回应磁信号,由于纤维发出的信号比油剂发出的信号衰减得快,从两者的差异上可换算出试样的含油率。低场核磁纤维含油率分析仪低场核磁共振法测定短纤维含油率的优势在哪里?传统纤维含油率检测方法大都采用萃取法;存在检测时间长,检测结果滞后,需要使用有害试剂,人工成本高,有经验误差等局限性。纽迈针对传统方法的缺陷,开发了利用低场核磁共振测试纤维含油率的方法。性能特点:快速、精确、无损仅需30S–快速响应,满足大样品测试需求,为在线实时质量控制提供可能国标方法–核磁共振法保证测量精确,无损、环保,可进行纵向实验。时域核磁共振分析仪软件界面
260人看过
2022-11-10 22:16:02测定玻璃化转变温度的常用方法-低场核磁共振法
测定玻璃化转变温度的常用方法-低场核磁共振法什么是玻璃化转变温度?玻璃化转变温度是指由高弹态转变为玻璃态或玻璃态转变为高弹态所对应的温度。玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。玻璃化转变温度是高分子聚合物的特征温度之一。以玻璃化温度为界,高分子聚合物呈现不同的物理性质:在玻璃化温度以下,高分子材料为塑料;在玻璃化温度以上,高分子材料为橡胶。从工程应用角度而言,玻璃化温度是工程塑料使用温度的上限,是橡胶或弹性体的使用下限。玻璃化转变的影响因素由于玻璃化转变是与分子运动有关的现象,而分子运动又和分子结构有着密切关系,所以分子链的柔顺性、分子间作用力以及共聚、共混、增塑等都是影响高聚物Tg的重要内因。此外,外界条件如作用力、作用力速率,升(阵)温速度等也是值得注意的影响因索。在玻璃化转变温度以上,高聚物表现出弹性;在玻璃化转变温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。但是,他不是制品工作温度的上限。比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。测定玻璃化转变温度的常用方法:1.膨胀计法:在膨胀计内装入适量的受测聚合物,通过抽真空的方法在负压下将对受测聚合物没有溶解作用的惰性液体充入膨胀计内,然后在油浴中以一定的升温速率对膨胀计加热,记录惰性液体柱高度随温度的变化。由于高分子聚合物在玻璃化温度前后体积的突变,因此惰性液体柱高度-温度曲线上对应有折点。折点对应的温度即为受测聚合物的玻璃化温度。2.折光率法:利用高分子聚合物在玻璃化转变温度前后折光率的变化,找出导致这种变化的玻璃化转变温度。3.热机械法(温度-变形法) 在加热炉或环境箱内对高分子聚合物的试样施加恒定载荷;记录不同温度下的温度-变形曲线。类似于膨胀计法,找出曲线上的折点所对应的温度,即为:玻璃化转变温度。4.DTA法(DSC):以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自由度的变化而呈现显著的变化,其中,热容的变化使热分析方法成为测定高分子材料玻璃化温度的一种有效手段。5.动态力学性能分析(DMA)法:高分子材料的动态性能分析(DMA)通过在受测高分子聚合物上施加正弦交变载荷获取聚合物材料的动态力学响应。6.低场核磁共振法:NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃方位、定量的研究样品。玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其蕞低点,即为相转变点,所对应温度为Tg。
347人看过
2023-05-23 15:18:42便携式核磁共振
一、什么是便携式核磁共振仪?  便携式核磁共振(NMR)是一种小型化和便携化的核磁共振技术,可以在进行现场或移动应用。它是将传统的大型NMR仪器进行尺寸缩小和优化,以便在更多场景下使用的创新技术。它的核心部分是一个低场强磁铁,通常在0.1T-1.5T之间。 二、便携式核磁共振仪有哪些特点? 1. 尺寸和重量:便携式核磁共振仪器相对较小、轻便,便于携带和操作。它们通常比传统的大型NMR仪器小得多,可以放在桌面上或移动到需要的地方进行实验。2. 磁场强度:由于限制了仪器的尺寸,便携式核磁共振的磁场强度通常较小。这可能会对一些应用的灵敏度和分辨率产生影响,但对于许多实际应用来说仍然足够。3. 电源和冷却:便携式核磁共振通常使用便携式电池供电,而不需要外部电源。此外,一些便携式核磁共振仪器采用了先进的冷却技术,如液氮或低温制冷系统,以实现冷却要求。4. 操作简便性:便携式核磁共振仪器通常具有用户友好的界面和简化的操作流程,使其更易于使用和操作。这使得非专业人士或初学者也能够进行基本的核磁共振实验。 便携式核磁共振分析仪是近年来发展迅速的一种新型分析仪器,具有广阔的应用前景。首先,便携式NMR分析仪的小型化和智能化趋势使得它们可以更加方便地携带和操作。这使得便携式NMR分析仪成为了快速检测样品物理、化学等特性的工具,并且可以应用于现场或者实验室以外的场合,如野外勘探、生产线监测等。其次,便携式NMR分析仪在食品科学、医学诊断、化学、材料科学等领域都有广泛的应用。例如,它可以用于检测食品中的营养成分、药物的成分和纯度、油气田勘探等领域。同时,随着便携式NMR分析仪技术的不断改进,它还将有望扩展到更多的领域和应用上。便携式NMR分析仪的价格也不断降低,这为更多的用户提供了使用便携式NMR分析仪进行科学研究和实验的机会。 综上所述,便携式核磁共振分析仪具有广阔的发展前景,将在不同领域中得到越来越广泛的应用。
366人看过
锂电池表征
低水溶性化合物TOC分析
超临界流体色谱
荧光寿命成像系统
冷却循环水给氙灯灯管
光氧化还原技术
主动溶剂调制技术
线倍频技术
多通道微量移液工作站
柴油发动机试验循环
电化学原位拉曼光谱法
线性扫描高光谱成像仪
ILT植物生长灯测量系统
定量PCR仪-MyGo Pro
6%鲁尔接头综合测试仪
化学气相沉积技术
缓冲液系统
Biacore系统
自主研制科学仪器
光催化氙灯光源
静测法可分为承压板法
连续流生产技术
手动移液器
烃类有机化合物
SHAPE成孔质量测试仪
船舶发动机排放检测系统
金刚石抛光液
表面科学仪器
环境球差透射电子显微镜
表面等离子体共振
粒度质控及激光粒度仪
鼻氧管气流阻力测试仪
便携式车载排放测试系统
锂电池材料的内部结构研究
超高效合相色谱
脑科学计划