仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

技术中心

当前位置:仪器网> 技术中心>USB3.0 信号完整性测试

USB3.0 信号完整性测试

来源:深圳市飞尔沃科技有限公司      分类:应用方案 2025-05-11 21:32:26 18阅读次数
扫    码    分   享

USB 3.0测试方法

拥有许多其它高速串行技术(如PCI Express和串行ATA)共有的特点:8b/10b编码,明显的通道衰减,扩频时钟。本文将介绍一致性测试方法及怎样对发射机、接收机及线缆和互连进行最精确的、可重复的测量。

High Speed Vs. SuperSpeed

  USB 3.0满足了市场对于更高带宽下实时体验应用的需求。目前USB设备达数十亿,因而USB 3.0也提供了向下兼容能力,支持传统USB 2.0设备。然而,USB 2.0和3.0在物理层有多种差异 (表1)。

表1. USB 2.0 和 SuperSpeed USB物理层区别

  SuperSpeed USB一致性测试已经有明显变化,以适应更高速接口带来的新挑战。USB 2.0接收机验证需要执行接收机灵敏度测试。USB 2.0设备必须对150 mV及以上的测试包做出响应,并且忽略100 mV以下的信号。

  SuperSpeed USB接收机必须面对更多的信号损伤,因此测试要求要比USB 2.0更加苛刻。设计人员还必须考虑传输线效应,在发射机中使用均衡技术(包括去加重),在接收机中使用连续时间线性均衡技术(CTLE)。此外,现在还要求在接收机上进行抖动容限测试,使用扩频时钟(SSC)和异步参考时钟可能会导致互操作能力问题。

  评估USB 3.0串行数据链路另一个重要部分是被测波形与互连通道的联系非常复杂。不能再认为只要发射机输出满足了眼图模板,电路就一定能在传输损耗满足要求的通道中正常工作。想了解发射机余量一定时的最差的传输通道,您需要在一致性测试要求以外建立通道和线缆组合模型,使用通道建模软件,分析通道效应 (图1)。

图1. 软件工具,可以针对参考测试通道分析USB 3.0 通道效应。

 发射机一致性测试

  通过使用各种测试码型以帮助进行发射机测试 (表2)。每种码型都是根据与评估码型的测试有关的特点而选择的。CP0(一种D0.0加扰序列)用来测量确定性抖动(Dj),如数据相关抖动(DDJ)。CP1(一种未加扰D10.2全速率时钟码型)不生成DDJ,因此更适合评估随机性抖动(RJ)。

表2. SuperSpeed USB 发送端一致性测试码型

  抖动和眼高的测量是通过对100万个连续比特(UI)进行分析而得到,需要使用均衡器功能和适当的时钟恢复设置(二阶锁相环、或称为PLL,10 Mhz环路带宽,0.707的阻尼系数)。通过分析被测数据样本,可以外推出10-12误码率(BER)下的抖动值。例如,通过外推算法,把测得的RJ (rms)乘以14.069,可以得到10-12误码率下RJ(PK-PK)。


 图2. 标准化发射机一致性测试设置,包括参考测试通道和线缆。测试点2 (TP2)距被测器件(DUT)最近,测试点1 (TP1)是远端测量点。

  在TP1采集信号后,可以使用SigTest软件处理数据,这与PCI Express官方的一致性测试方法类似。对需要预测试一致性、检定或调试的应用,希望可以进一步了解电路在各种条件或参数下的特点。装有USB 3.0分析软件的高带宽示波器提供了Normative和Informative方式的物理层发射端自动测量。省掉了手动配置的步骤,大大节约了测量时间。

  在测试完成后,详细的Pass/Fail测试报告标记出哪里可能发生设计问题。如果在不同测试地点(如公司实验室、测试中心)结果不一致,可以使用之前测试时保存的波形数据重新分析(离线测量)。

  如果要求更多的分析,可以使用抖动分析和眼图分析软件,调试和检定电路。例如,可以一次显示多个眼图,允许工程师分析不同时钟恢复设置或软件通道模型的影响。此外,可以使用不同的滤波器,分析SSC的影响,解决系统互操作能力问题。

 均衡考虑因素

  由于明显的通道衰减,SuperSpeed USB要求某种形式的补偿,张开接收机上的眼图。发射机上采用均衡技术,其采用去加重的形式。规定的标称去加重比是3.5 dB,用线性单位表示为1.5倍。例如,在跳变比特电平为150 mVp-p时,非跳变比特电平为100 mVp-p。

  CTLE标准均衡实现方案包括片内技术、有源接收机均衡或无源高频滤波器,如线缆均衡器上使用的滤波器。这一模型特别适合一致性测试,因为它非常简便地描述了传输函数。CTLE通过频域中的一系列极点和零点,在特定频率上达到峰值(Peak)。

  CTLE实现方案的设计要比其它技术简单,能耗要低于其它技术。然而,在某些情况下,由于适应性、精度和噪声放大方面的限制,仅仅使用CTLE实现方案可能是不够的。其它技术包括前向反馈均衡(FFE)和判定反馈均衡(DFE),通过对数据样点加权一些补偿系数来补偿通道损耗。

  CTLE和FFE是线性均衡器。因此,这两种技术都会提升高频噪声,而产生信噪比劣化。但是,DFE在反馈环路中使用非线性元器件,使噪声的放大达到最小,补偿码间干扰(ISI)。图3示例了一个经过传输通道明显衰减的5Gbps 信号,和使用去加重、CLTE和DFE均衡技术处理之后的信号。

  图3. 去加重(蓝色)、长通道(白色)、CTLE (红色)和三阶DFE (灰色)对5-Gbit/s信号(黄色)产生的不同效果。

USB 3.0接收端测试

USB 3.0接收端测试类似于其它高速串行总线接收端的一致性测试,一般分为三个阶段,开始是受压眼图校准,然后是抖动容限测试,最后是分析。下面让我们看看这个过程的流程图(图4)。

受压眼图校准使用最糟糕信号,这个信号通常在垂直方向(通过增加的抖动)和水平方向(通过将幅度设置为接收端在部署时能看到的最低值)都有损伤。当任何测试夹具、电缆或仪器发生改变时都必须执行受压眼图校准。

  抖动容限测试将校准后的受压眼图用作输入,然后施加更高频率带来的附加正弦抖动(SJ)。这种SJ将作用于接收端内的时钟恢复电路,因此不仅使用最差信号条件测试了接收端,而且时钟恢复也得到了明确的测试。最后,通过分析评估测试完成后是否需要执行额外的设计任务才能达到一致性。

  受压眼图校准过程首先要用一致性夹具、电缆和通道设置好测试设备(图5)。下一步是反复测量和调整各种类型的外加应力,如抖动。校准步骤执行时不需要DUT,但需要一致性测试夹具、通道以及测试设备产生的特定数据图案。测试仪器应能执行两种功能——能够增加各种应力的图案发生功能,以及抖动和眼图测量等信号分析功能。

校准受压眼图时必须完成三种损伤校准:RJ、SJ和眼图高度。每种校准都要求对图案发生器和分析仪进行特定的设置。对每组电缆、适配器和仪器也必须做一次受压眼图校准。由于使用不同的适配器和参考通道组,主机和设备将经过不同的受压眼图校准过程。一旦完成后,校准眼图的设置可以重复使用,只有当设备设置发生改变时才必须做再次校准。

额外的图案发生器要求

前面已经介绍了要求校准的全部事项,下面让我们再看看每步校准对图案发生器的附加要求,包括使用的数据图案、去加重程度、SSC是否应激活等。在受压眼图校准方案中,列出了两种图案,即CP0和CP1。表3列出了所有的USB 3.0一致性图案供参考。

CP0是一种8b/10b编码、PRBS-16数据图案(将D0.0字符送到USB 3.0发送端中进行扰码和编码的结果)。经过8b/10b编码后,最长的连1或连0长度从PRBS-16图案中的16比特减少到了5个比特。CP3是类似于8b/10b编码过的PRBS-16的图案,其中包含最短(单个比特)和最长的相同比特序列。

CP1是用于RJ校准的时钟图案。许多仪器在RJ测量时采用dual-Dirac随机与确定性抖动分离方法。使用时钟图案可以避免dual-Dirac方法的一些缺陷,例如将DDJ报告为RJ,特别是针对长图案。通过使用时钟图案,作为ISI结果的DDJ将从抖动测量中消除,从而形成更精确的RJ测量结果。

  在图案发生器和分析仪之间的有损通道(即USB 3.0参考通道和电缆)将导致垂直和水平方向表现为眼图关闭的频率相关损耗(图6)。为了解决这种损耗问题,需要使用发送端去加重技术提升信号中的高频分量,从而使BER为10-12或更高的工作链路有足够好的接收眼图。

 从这些眼图可以看出,没有去加重时所有幅度名义上都是相同的。采用去加重后,跳变沿比特的幅度要高于非跳变沿比特的幅度,从而有效提升了信号的高频分量。

  在通过有损通道和电缆后,没有经过去加重处理的信号将受到码间干扰(ISI)的影响,眼图开度要比经过了去加重的信号小。同时,采用去加重的信号是全开的。从这里可以看出,去加重程度会影响ISI和DDJ的程度,进而影响接收端的眼图开度。

  在同步数字系统(包括USB 3.0)中经常使用SSC来减小电磁干扰(EMI)。如果不使用SSC,数字流频谱中的载频(即5Gbps)及其谐波处会出现大幅度的尖峰,并且有可能超过调整极限(图7)。

为了防止出现这个问题,可以用SSC扩展频谱能量。在这个案例中载频被一个三角波所调制。用于接收端测试的频率“扩展”量是5000ppm或25MHz,频率调制周期为33kHz或每隔30μs,即三角波的一个周期。经过SSC后,频谱中的能量得到了扩展,不会再有单个频率破坏规范极限。

  如前所述,USB 3.0中的接收侧均衡可以改善被码间干扰损伤的信号,这种码间干扰是由于参考通道和电缆中的频率相关损耗引起的。这种概念等同于去加重——通过信号处理方法提升信号中的高频分量。

  虽然设备或主机中的接收端均衡电路与具体实现有关,但USB 3.0标准为一致性测试规定了CTLE(图8)。这种CTLE必须在进行一致性测试测量(都是针对发送端测试,在本例中是接收端受压眼图校准)之前,由误码率测试仪(BERT)或示波器等参考接收端实现,并且通常采用软件模拟的方式。

使用CTLE模拟进行抖动测量主要影响由信号处理方法引起的抖动,即ISI。CTLE模拟不影响与数据图案(如RJ和SJ)不相关的抖动分量,虽然根据一致性测试规范(CTS)这两种测量都要求使用CTLE。另一方面,眼图高度会直接受到影响,因为ISI影响测量。

  抖动测量时必须使用具有一致性抖动转移函数(JTF)的时钟恢复“黄金PLL”,如图9中的蓝线所示。JTF表明了有多少抖动从输入信号转移到下游分析仪。在本例中,-3dB截止频率是4.9MHz。

在更低的SJ频率(沿着JTF的倾斜部分,此处的PLL环路响应是平坦的),恢复时钟跟踪数据信号上的抖动。这样,相对于时钟的数据抖动将按照JFT得到衰减。在较高的SJ频率点,JTF变平,PLL响应向下倾斜,信号中的SJ部分被转移到下游分析仪。除了受压眼图校准期间的SJ外,所有测量都规定要使用一致性JTF。

  一旦受压眼图完成校准,接收端测试就可以开始了。USB 3.0与以前的USB 2.0不同,要求进行BER测试。采用抖动容限测试形式的BER测试仅是接收端测试要求的测试项目。抖动容限测试使用最差输入信号条件试验接收端(受压眼图的校准见前面部分)。在受压眼图顶部,围绕JTF的-3dB截止频率且覆盖一定频率范围的一系列SJ频率和幅度被注入测试信号,同时由误码检测器监视接收端的错误或比特误码,并计算BER。

总结

随着USB 3.0开始走向主流,需要对发送端和接收端进行成功的一致性和认证测试,这是将新产品推向市场的关键。这些产品不仅要求能与其它USB 3.0设备一起工作,而且要满足消费者对各种条件下的性能和可靠性的期望值。

  性能的急剧提高带来了许多新的测试要求,也使得设计和认证比前代标准更具挑战性。幸运的是,有一整套测试工具和资源可以用来协助SuperSpeed USB商标认证。


标签:USB3.0 信号完整性测试

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

推荐阅读

版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

作者简介:[详细]
最近更新:2025-05-12 18:25:24
关注 私信
更多

最新话题

最新文章

作者榜