仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

氮气发生器如何制得氮气?

杭州安研仪器制造股份有限公司 2021-11-26 10:04:58 285  浏览
  • 科学技术是生产力,随着科学技术的发展,各式各样的仪器如雨后春笋一般的涌现出来,氮气发生器就是其中之一,打开网页搜索氮气发生器,发现关于其的内容多不胜数,那么为什么氮气发生器这么火呢,这还要从氮气的用处来说了。
     氮气是空气中体积分数Zda的一种惰性气体,化学分子式为N2,通常状态下无色无味,比空气密度小。氮气化学性质不活泼,常温下难与其他物质进行反应,因此通常被用作保护气体,液氮可用作深度冷冻剂,高纯氮气可用作色谱等仪器的载气,氮气的性质决定了它的用途的广泛。 
    而实验室中氮气通常的来源主要由3种:1.管道气,2.氮气罐,3.氮气发生器。
     第1种比较适合大型工厂,建设费用高昂,第2种通常会因储存和运输的麻烦而有的局限性,一种操作灵活可控,越来越受到实验室使用。
      氮气发生器是如何产生氮气的呢,通常来说,有三种方法。
    1.电化学制备氮气
    将高压空气从氢气电解池的阴极一侧通入,在催化剂的催化作用下,进行2H2+O2=2H2O的氧化还原反应,通过此方法可去除空气中的O2,产出高达99.995%N2,然而此方法有的局限性。一是此方法只是单纯的去除空气中的O2,对于空气中的其他杂质并未提及,二是单位成本过高,因此此方法通常用来制备少量的氮气。
    2. 膜分离制备氮气
    利用N2分子和O2分子的扩散速度的不同,将高压空气通过中空纤维膜组件,在输出端就可以积累纯度高达99%的氮气,这种方法在不考虑其他限制的条件下,可以累加使用,因此常用在实验室对气体纯度不高的保护、吹扫等操作实验中,但是由于其氮气纯度不能达到高纯级,且膜组件成本较高、仪器价格也相应的过高。
    3. PSA变压吸附制备氮气
    通过利用在分子筛中,N2与其它气体分子的吸附能力不同,从而形成差异的浓度,分子筛柱末端可以获得高纯氮气,利用这种方法研制的氮气发生器可以让用户根据个人实际要求,来产生不同纯度的氮气,Z高可达99.999%,这种方法的难点是分子筛柱填装技术,分子筛填装不好,会因为气体高低压频繁变化,导致分子筛受损,微孔数量减少,从而使得性能降低,纯度因此也会受到影响。

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

氮气发生器如何制得氮气?

科学技术是diyi生产力,随着科学技术的发展,各式各样的仪器如雨后春笋一般的涌现出来,氮气发生器就是其中之一,打开网页搜索氮气发生器,发现关于其的内容多不胜数,那么为什么氮气发生器这么火呢,这还要从氮气的用处来说了。

 

氮气是空气中体积分数Z大的一种惰性气体,化学分子式为N2,通常状态下无色无味,比空气密度小。氮气化学性质不活泼,常温下难与其他物质进行反应,因此通常被用作保护气体,液氮可用作深度冷冻剂,高纯氮气可用作色谱等仪器的载气,氮气的性质决定了它的用途的广泛。 

而实验室中氮气通常的来源主要由3种:1.管道气,2.氮气罐,3.氮气发生器

 

第1种比较适合大型工厂,建设费用高昂,第2种通常会因储存和运输的麻烦而有一定的局限性,Z后一种操作灵活可控,越来越受到实验室使用。

 

 氮气发生器是如何产生氮气的呢,通常来说,有三种方法。

1.电化学制备氮气

将高压空气从氢气电解池的阴极一侧通入,在催化剂的催化作用下,进行2H2+O2=2H2O的氧化还原反应,通过此方法可去除空气中的O2,产出高达99.995%N2,然而此方法有一定的局限性。一是此方法只是单纯的去除空气中的O2,对于空气中的其他杂质并未提及,二是单位成本过高,因此此方法通常用来制备少量的氮气。

2. 膜分离制备氮气

利用N2分子和O2分子的扩散速度的不同,将高压空气通过中空纤维膜组件,在输出端就可以积累纯度高达99%的氮气,这种方法在不考虑其他限制的条件下,可以累加使用,因此常用在实验室对气体纯度不高的保护、吹扫等操作实验中,但是由于其氮气纯度不能达到高纯级,且膜组件成本较高、仪器价格也相应的过高。

3. PSA变压吸附制备氮气

通过利用在分子筛中,N2与其它气体分子的吸附能力不同,从而形成差异的浓度,分子筛柱末端可以获得高纯氮气,利用这种方法研制的氮气发生器可以让用户根据个人实际要求,来产生不同纯度的氮气,Z高可达99.999%,这种方法的难点是分子筛柱填装技术,分子筛填装不好,会因为气体高低压频繁变化,导致分子筛受损,微孔数量减少,从而使得性能降低,纯度因此也会受到影响。

 

普拉勒作为实验室气体发生器行业的主要供应商,其生产的氮气发生器采用双塔变压吸附技术产生连续的高纯氮气,该技术利用碳分子筛的选择性分离并过滤空气中的氧气、二氧化碳和水蒸气。氮气发生器有两个碳分子筛柱,预处理的压缩空气进入并穿过diyi个碳分子筛柱,氧气、二氧化碳、水蒸气及其他杂质被碳分子筛吸附,只允许氮气通过碳分子筛并进入内部氮气罐。经过一段时间后该碳分子筛柱吸附饱和,系统将自动切换至第二个碳分子筛柱继续工作,diyi个已饱和的碳分子筛柱经过快速降压,将吸附捕捉的氧气释放到空气中,从而被活化再生。两个碳分子筛柱的吸附和净化再生过程交替进行,以此连续产生洁净、干燥的高纯氮气,是实验室科研人员的理想选择。

普拉勒氮气发生器原理图



2019-05-29 11:35:46 762 0
氮气发生器如何制得氮气?

科学技术是生产力,随着科学技术的发展,各式各样的仪器如雨后春笋一般的涌现出来,氮气发生器就是其中之一,打开网页搜索氮气发生器,发现关于其的内容多不胜数,那么为什么氮气发生器这么火呢,这还要从氮气的用处来说了。
 氮气是空气中体积分数Zda的一种惰性气体,化学分子式为N2,通常状态下无色无味,比空气密度小。氮气化学性质不活泼,常温下难与其他物质进行反应,因此通常被用作保护气体,液氮可用作深度冷冻剂,高纯氮气可用作色谱等仪器的载气,氮气的性质决定了它的用途的广泛。 
而实验室中氮气通常的来源主要由3种:1.管道气,2.氮气罐,3.氮气发生器。
 第1种比较适合大型工厂,建设费用高昂,第2种通常会因储存和运输的麻烦而有的局限性,一种操作灵活可控,越来越受到实验室使用。
  氮气发生器是如何产生氮气的呢,通常来说,有三种方法。
1.电化学制备氮气
将高压空气从氢气电解池的阴极一侧通入,在催化剂的催化作用下,进行2H2+O2=2H2O的氧化还原反应,通过此方法可去除空气中的O2,产出高达99.995%N2,然而此方法有的局限性。一是此方法只是单纯的去除空气中的O2,对于空气中的其他杂质并未提及,二是单位成本过高,因此此方法通常用来制备少量的氮气。
2. 膜分离制备氮气
利用N2分子和O2分子的扩散速度的不同,将高压空气通过中空纤维膜组件,在输出端就可以积累纯度高达99%的氮气,这种方法在不考虑其他限制的条件下,可以累加使用,因此常用在实验室对气体纯度不高的保护、吹扫等操作实验中,但是由于其氮气纯度不能达到高纯级,且膜组件成本较高、仪器价格也相应的过高。
3. PSA变压吸附制备氮气
通过利用在分子筛中,N2与其它气体分子的吸附能力不同,从而形成差异的浓度,分子筛柱末端可以获得高纯氮气,利用这种方法研制的氮气发生器可以让用户根据个人实际要求,来产生不同纯度的氮气,Z高可达99.999%,这种方法的难点是分子筛柱填装技术,分子筛填装不好,会因为气体高低压频繁变化,导致分子筛受损,微孔数量减少,从而使得性能降低,纯度因此也会受到影响。

2021-11-26 10:04:58 285 0
氮气,氮气发生器的应用范围

氮气发生器的应用范围:
氮气发生器是一套能提取氮气的设备,它主要应用领域为:航空航天、核电核能、食品医药、石油化工、电子工业、材料工业、国防军gong和科学实验等。
1、电子:在精密电子行业,精密仪器的生产和处理需要高纯度氮气。
2、食品:需要防水及防氧处理的食品、水果、粮食处理中需要用到高纯氮气。
3、化工:化工产品生产、储藏及运输过程中需要用到氮气。

2022-02-10 14:39:34 145 0
氮气发生器的制氮原理
制氮机系统原理 氮气发生器
氧、氮两种气体分子在分子筛表面上的扩散速率不同,直径较小的气体分子(O2)扩散速率较快,较多的进入碳分子筛微孔,直径较大的气体分子(N2)扩散速率较慢,进入碳分子筛微孔较少。利用碳分子筛对氮和氧的这种选择吸附性差异,导致短时间内氧在吸附相富集,氮在气体相富集,如此氧氮分离,在PSA条件下得到气相富集物氮气。
氮气发生器
碳分子筛对氧和氮在不同压力下某一时间内吸附量的变化差异曲线:
一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除对氧的吸附,这一过程为再生。根据再生压力的不同,可分为真空再生和常压再生。常压再生利于分子筛的再生,易于获得高纯度气体。
高纯氮气发生器
变压吸附制氮机(简称PSA制氮机)是按变压吸附技术设计、制造的氮气发生设备。通常使用两吸附塔并联,由全自动控制系统按特定可编程序严格控制时序,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。


2022-02-15 14:56:50 420 0
氮气发生器 出来的氮气还需要净化吗
 
2017-03-01 02:05:31 420 1
氮气发生器三种制氮方法及其特点

现代工业用氮的制取方法都是以空气为原料,将其中的氧和氮分离而获得。目前主要有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。

1 深冷空分制氮
深冷空分制氮是一种传统的制氮方法,已有近九十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。

2分子筛空分制氮
分子筛空分制氮是以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA(Pressure Swing Adsorption)制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的方法。

3膜空分制氮
膜空分制氮是八十年代国外迅速发展的又一种新型制氮技术,在国内推广应用是近三四年的事。膜空分制氮的基本原理是以空气为原料,在压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(≤3分钟)、增容方便等优点,它适宜于氮气纯度≤98%的中、小型氮气用户,有佳功能价格比。而氮气纯度在98%以上时,它与相同规格的PSA制氮机相比价格要高出15%以上。由上可知,MnZn铁氧体生产企业,采用什么供气方式和何种供气技术,根据企业情况进行技术经济论证,选择佳供气方案。

2022-02-08 14:14:11 450 0
氮气发生器-PSA变压吸附制氮原理

PSA变压吸附制氮。利用氮气与其它气体分子在分子筛中的吸附能力差异,形成浓度差异的积累,在分子筛柱末端产出高纯度氮气。同时利用两根分子筛柱,一根吸附的同时引出一部分产品气为另一根解析,实现分子筛在线再生,整体表现即为仪器持续输出高纯氮气。这类发生器可根据需要,调节氮气的纯度和流量,可生产99.999%的氮气产品,流量可从几百毫升到几十升到几立方每分钟,纯度大小配置灵活,可根据每个需求具体定制,PSA变压吸附技术在工业中应用很广泛,已发展几十年,是很成熟的技术。技术难点主要是分子筛柱填装技术,分子筛填装不好,会造成分子筛在气体高低压频繁变化中互相摩擦碰撞粉化,微孔数量减少,分子筛性能急剧降低。

2022-02-25 14:05:16 361 0
压片机普通冲头材质及如何制得的
 
2012-06-24 20:20:33 316 2
氮气发生器变压吸附制氮原理的简介

变压吸附(Pressure Swing Adsorption,简称PSA)气体分离技术是非低温气体分离技术的重要分支,是人们长期来努力寻找比深冷法更简单的空分方法的结果。七十年代西德埃森矿业公司成功开发了碳分子筛,为PSA空分制氮工业化铺平了道路。三十年来该技术发展很快,技术日趋成熟,在中小型制氮领域已成为深冷空分的强有力的竞争对手。
变压吸附制氮是以空气为原料,用碳分子筛作吸附剂,利用碳分子筛对空气中的氧和氮选择吸附的特性,运用变压吸附原理(加压吸附,减压解吸并使分子筛再生)而在常温使氧和氮分离制取氮气。
变压吸附制氮与深冷空分制氮相比,具有显著的特点:吸附分离是在常温下进行,工艺简单,设备紧凑,占地面积小,开停方便,启动迅速,产气快(一般在30min左右),能耗小,运行成本低,自动化程度高,操作维护方便,撬装方便,无须专门基础,产品氮纯度可在范围内调节,产氮量≤2000Nm/h。但到目前为止,除美国空气用品公司用PSA制氮技术,无须后级纯化能工业化生产纯度≥99.999%的高纯氮外(进口价格很高),国内外同行一般用PSA制氮技术只能制取氮气纯度为99.9%的普氮(即O2≤0.1%),个别企业可制取99.99%的纯氮(O2≤0.01%),纯度更高从PSA制氮技术上是可能的,但制作成本太高,用户也很难接受,所以用非低温制氮技术制取高纯氮还加后级纯化装置。

2022-02-08 14:19:28 567 0
氮气发生器-PSA变压吸附制氮法介绍

PSA变压吸附制氮。

利用氮气与其它气体分子在分子筛中的吸附能力差异,形成浓度差异的积累,在分子筛柱末端产出高纯度氮气。同时利用两根分子筛柱,一根吸附的同时引出一部分产品气为另一根解析,实现分子筛在线再生,整体表现即为仪器持续输出高纯氮气。这类发生器可根据需要,调节氮气的纯度和流量,可生产99.999%的氮气产品,流量可从几百毫升到几十升到几立方每分钟,纯度大小配置灵活,可根据每个需求具体定制,我公司生产的型号末端带P的即为此类产品,如MNN-5LP。PSA变压吸附技术在工业中应用很广泛,已发展几十年,是很成熟的技术。技术难点主要是分子筛柱填装技术,分子筛填装不好,会造成分子筛在气体高低压频繁变化中互相摩擦碰撞粉化,微孔数量减少,分子筛性能急剧降低。


2022-06-06 11:43:59 149 0
用空气压缩机可以制得液氮吗?
 
2017-08-25 00:47:25 334 1
飞机轮胎使用什么高分子材料制得
 
2018-11-17 08:06:57 335 0
影响氮气发生器制氮纯度的因素有哪些?

       氮气发生器作为气相色谱中载气设备广受大家青睐,而采用PSA变压吸附制氮的氮气发生器因其纯度高、无污染更是炙手可热,但是“甘瓜苦蒂,天下物无全美”,这款发生器在日常使用中也会出现制得氮气纯度不是太高的情况,那么是什么因素影响了制氮纯度了?下面简单介绍下关于影响PSA制氮纯度的因素。

       在介绍影响因素之前,我们首先要从PSA制氮流程来了解下。PSA氮气发生器制氮的工艺流程:空气在经压缩和净化后进入空气缓冲罐,缓冲上游因压力变化而引起的波动,由下至上流经装有CMS(碳分子筛)的吸附塔,期间O2分子在CMS表面吸附,N2从吸附塔上端流出,进入氮气缓冲罐,一段时间后,吸附塔中的CMS被吸附的氧气饱和,需要进行再生,利用停止吸附步骤,降低吸附塔压力来实现。两个吸附塔交替进行吸附和再生,确保氮气的连续输出。

了解了工艺流程,我们知道了PSA里面核心部件是吸附塔、分子筛(CMS),那么这些和影响因素有什么样的联系呢?

PSA氮气发生器制氮纯度影响因素:

(1)气体原料的质量

我们知道,气体是要经压缩后进入空气缓冲罐,那么压缩空气中如含有水汽、油雾,这些都会堵塞分子筛(CMS)的微孔,从而严重影响分离效果及CMS的使用寿命,因此,要想获得高纯度的氮气,保优质的空气至关重要,并且要经多次净化过滤,滤芯需要定期检查或者更换。

(2)吸附塔的工作时间

长时间的工作周期也即是阀门的切换时间间隔,有利于降低氮气发生器能耗,且节约空气原料,不过纯度也会因周期过长,分子筛会饱和而受到影响。

(3)分子筛的性能

分子筛是PSA氮气发生器的核心部件,它的性能好坏对于制得的氮气纯度有极大的联系,同时我们还需要根据实际需要的氮气流量和纯度来计算出分子筛的合适装填量。

以上3 点就是关于采用PSA制氮的氮气发生器制取氮气纯度的影响因素,相信对大家在使用氮气发生器时候能有所帮助。

普拉勒氮气发生器制氮原理图


(相关内容来源于网络)

2019-05-29 11:35:46 732 0
浅述影响氮气发生器制氮纯度的因素
氮气发生器包括氮氧分离系统、氮气缓冲系统、空气储罐系统、电气控制系统等。在这些系统中,氮氧分离系统是制氮设备的主要部件,由两个交替工作的吸附塔(塔内装碳分子筛)和气动阀、节流阀、消音器等组成。根据碳分子筛对空气中主要成分氧气和氮气的吸附速率不同,在液质用氮气发生器加压吸附和降压脱附过程中实现氮氧分离,而加压吸附与降压脱附过程由可编程控制器按一定程序控制电磁阀,并由电磁阀控制相应的气动阀自动运行。
其主体是两个装满碳分子筛的吸附塔,当洁净压缩空气进入一吸附塔时,O2、CO2和微量H2O被碳分子筛吸附,氮气从出口端输出。当一塔在吸附制氮时,另一塔通过减压使吸附在分子筛中的O2、CO2和H2O从微孔中排出,实现分子筛的生脱附。两塔交替进行吸附和生,连续输出氮气,该系统由吸附塔、塔内装填的碳分子筛、气动阀、消声器、节流阀、压紧气缸、压力表等组成。
氮气发生器的制氮纯度会受到以下因素的影响:
(1)气体原料的质量
气体是要经压缩后进入空气缓冲罐,那么压缩空气中如含有水汽、油雾,这些都会堵塞分子筛(CMS)的微孔,从而严重影响分离效果及CMS的使用寿命,因此,要想获得高纯度的氮气,空气至关重要,并且要经多次净化过滤,滤芯需要定期检查或者更换。
(2)吸附塔的工作时间
长时间的工作周期也即是阀门的切换时间间隔,有利于降低能耗,且节约空气原料,不过纯度也会因周期过长,分子筛会饱和而受到影响。
(3)分子筛的性能
分子筛是氮气发生器的核心部件,它的性能好坏对于制得的氮气纯度有很大的关联,同时我们还需要根据实际需要的氮气流量和纯度来计算出分子筛的合适装填量。
更多详情敬请咨询杭州安研仪器


2022-02-11 14:53:35 183 0
氮气流量:10NL/min的氮气发生器哪个厂家生产的?
 
2012-12-15 18:27:35 375 4

5月突出贡献榜

推荐主页

最新话题