仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

测量超疏水材料接触角遇到的ZD障碍

北京东方德菲仪器有限公司 2020-09-09 14:46:56 336  浏览
  •       用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积,利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。

           非接触式注液是指在注射器上安装一个针嘴,通过注射泵的脉冲推射液滴,使液滴直接落到材料表面上。这种注液方式完全避免了液滴在注射针针头上的黏附,彻底解决了液滴转移的问题。

           非接触式注液打破了传统注射单元只能控制注射速度的局限,WM地将注射速度和注射加速度结合在一起,解决了超疏水材料接触角测量的ZD障碍—液滴“包针”问题 。


参与评论

全部评论(0条)

热门问答

测量超疏水材料接触角遇到的ZD障碍

      用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积,利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。

       非接触式注液是指在注射器上安装一个针嘴,通过注射泵的脉冲推射液滴,使液滴直接落到材料表面上。这种注液方式完全避免了液滴在注射针针头上的黏附,彻底解决了液滴转移的问题。

       非接触式注液打破了传统注射单元只能控制注射速度的局限,WM地将注射速度和注射加速度结合在一起,解决了超疏水材料接触角测量的ZD障碍—液滴“包针”问题 。


2020-09-09 14:46:56 336 0
超疏水材料的接触角测量

      超疏水表面指难以被水润湿的表面,在这种表面上水滴难以铺展,水总是团聚在一起。 测量液滴和材料的接触角是评价材料表面润湿性的主要方法,超疏水材料的接触角甚至会大 于 150°。为了全面的评价超疏水材料的润湿性,在实验中有必要测量液滴的前进角、后退 角和滚动角等动态过程。 

      使用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积, 利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻 弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。 

      非接触式注液是指通过注射器上的喷嘴,利用注射泵的脉冲推射液滴,使液滴直接落到 材料表面上。这种注液方式完全避免了液滴在注射针针头上的粘附,彻底解决了液滴转移的 问题。 

图 1 非接触式注液(注射时间约 200ms) 

      在液体转移到材料表面之后,仪器会自动拍下一张清晰的照片。为了准确的计算液滴的 接触角,我们建议使用 Laplace-Young 算法。因为在超疏水材料上的液滴接触角很大,呈现 很好的轴对称性,在诸多接触角计算的模型中,Laplace-Young 算法全面考虑到重力、密度 等因素对液滴形状的影响,所以它是Z为准确的测量水平的超疏水材料表面上液体接触角的 计算方法。 

图 2 Laplace-Young 法计算接触角 

      为了全面的评价超疏水材料的润湿性,除了测量液滴在在水平的材料表面上的接触角之 外,我们往往还要测量液滴在材料倾斜表面上的前进角、后退角、和滚动角。使用自动倾斜 台可以方便的完成这种测量。这里需要注意到液滴处于倾斜表面上在重力作用下已经不再对 德菲知识分享 称,所以 Laplace-Young 法一般不再适用,此时需要使用能够对液滴表面分段拟合计算的一些专用方法,例如 Truedrop 算法。

 

图 3 倾斜台测量动态接触角和滚动角

如果仪器没有配置自动倾斜台,那么可以考虑使用注液-吸液法测量前进角和后退角。 在注液和吸液过程中注射针可能会偏离液滴的ZX,这时如果注射针架可以在 X/Y/Z 三轴精密移动,将会方便的调整注射针的位置,使得注射针对液滴形状的影响降到Z小,能够较为 准确的测量前进角和后退角的数值。 

图 4 注液-吸液法测量动态接触角 

Z后在进行数据分析的时候,接触角的数值变化往往和三相接触点位置的变化紧密相关。 所以在动态数据图表上Z好同时显示接触角的变化曲线和三相接触点位置的变化曲线。这样才能完整准确的描述前进角和后退角的形成及变化过程。

 图 5 动态接触角数据曲线图 加液-减液法



(来源:北京东方德菲仪器有限公司)

2019-07-19 13:22:16 1036 0
接触角测量仪的应用:超疏水材料的接触角测量

       超疏水表面指难以被水润湿的表面,在这种表面上水滴难以铺展,水总是团聚在一起。测量液滴和材料的接触角是评价材料表面润湿性的主要方法,超疏水材料的接触角甚至会大于 150°。为了全面的评价超疏水材料的润湿性,在实验中有必要测量液滴的前进角、后退角和滚动角等动态过程。
       使用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积,利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。
       非接触式注液是指通过注射器上的喷嘴,利用注射泵的脉冲推射液滴,使液滴直接落到材料表面上。这种注液方式完全避免了液滴在注射针针头上的粘附,彻底解决了液滴转移的问题。

       在液体转移到材料表面之后,仪器会自动拍下一张清晰的照片。为了准确的计算液滴的接触角,我们建议使用 Laplace-Young 算法。因为在超疏水材料上的液滴接触角很大,呈现很好的轴对称性,在诸多接触角计算的模型中,Laplace-Young 算法全面考虑到重力、密度等因素对液滴形状的影响,所以它是Z准确的测量水平的超疏水材料表面上液体接触角的计算方法。

       为了全面的评价超疏水材料的润湿性,除了测量液滴在在水平的材料表面上的接触角之外,我们往往还要测量液滴在材料倾斜表面上的前进角、后退角、和滚动角。使用自动倾斜台可以方便的完成这种测量。这里需要注意到液滴处于倾斜表面上在重力作用下已经不再对称,所以 Laplace-Young 法一般不再适用,此时需要使用能够对液滴表面分段拟合计算的一些专用方法,例如 Truedrop 算法。

       如果仪器没有配置自动倾斜台,那么可以考虑使用注液-吸液法测量前进角和后退角。在注液和吸液过程中注射针可能会偏离液滴的ZX,这时如果注射针架可以在 X/Y/Z 三轴精密移动,将会方便的调整注射针的位置,使得注射针对液滴形状的影响降到Z小,能够较为准确的测量前进角和后退角的数值。

       Z后在进行数据分析的时候,接触角的数值变化往往和三相接触点位置的变化紧密相关。所以在动态数据图表上同时显示接触角的变化曲线和三相接触点位置的变化曲线。这样才能完整准确的描述前进角和后退角的形成及变化过程。


2020-06-01 09:43:41 454 0
超疏水表面测量接触角的仪器
 
2006-12-02 10:01:23 278 2
超亲水材料与超疏水材料的微观动态变化和平衡接触角的演变

荷叶(Lotus effect)具有非常好的超疏水性,因而,在取得ZH的平衡接触角时,出现了明显的弹跳效果。且如果疏水角度越大,弹跳的高度越高。且从效果影像中可以看出,此时的滚动角度非常小,水滴很容易滚动。

而这些均是我们长期研究中,我们仅仅注意了荷叶的表面结构以及平衡态的接触角值(平衡态的接触角值仅仅表征了部分性质)。在测试过程中,我们也发现由于荷叶的超疏水性,水滴从针头转移到荷叶表面会相对比较困难。目前美国科诺提供了全世界Z细的27号聚四氟乙烯针头以及34号不锈钢针头,液滴转移时量为4-5uL左右。由于滚动角(roll-off angle)非常小,所以,水滴停留的地方通常是表面有瑕疵的位置或边缘,此时的平衡接触角值意义不大。

由下面的影像我们认为,从高速的角度考虑才是最合理的方案,表征超疏水效果会比一般平衡接触角值的表征会更有意义。且,在接触角以及界面能量的分析中,我们采用了在Young-lapalace方程拟合中增加能量(重力加速度等势能与动能的考虑),提出了世界ling先技术的ADSA-HS技术,从而为我们进一步探究仿生材料提供了更好的分析技术。


2、我们对比实验了一组普通材料的水滴滴向表面的效果,其在平衡接触角形成前的动态效果如下所示。

很明显的看出,此时的弹跳效果不明显,这是由于固体表面自由能大于液滴弹跳的作用能量。且我们非常容易得到结论,固体表面能越大,其向上延展的高度就越低。


(1)空调器用超亲水铝箔的动态接触角演变过程。ZH平衡接触角值为3度以内。

(2)实验室用载玻片接触角演变影像。

(3)不锈钢表面平衡态接触角前的动态演变影像。

(4)聚四氟乙烯表面平衡态接触角前的动态演变影像

2021-03-09 17:47:29 577 0
什么是超疏水材料
请问大家知道什么材料是超疏水材料吗?Z好是薄膜。哪里可以买啊?... 请问大家知道什么材料是超疏水材料吗?Z好是薄膜。哪里可以买啊? 展开
2006-01-03 00:12:43 337 3
LAUDA接触角测量仪应用:超亲水材料的接触角测量

       超亲水材料对水的润湿性非常好,水滴在这种材料表面上极易铺展,接触角数值很小,称为极低接触角。

       在很多应用领域会涉及到极低接触角的测量。比如液晶屏和太阳能电池板的清洗工序。清洗后有机污染物去除的越彻底,材料表面越清洁则接触角数值越小。工艺上往往要求水滴的接触角小于10°甚至更低。

       利用传统的侧视法接触角测量仪时,如果接触角低于 15°,测量难度将随着接触角角度的减小而急剧升高,准确性和可靠性下降。当接触角低于约 5°时,几乎很难再得到有意义的结果。这是因为当接触角下降到这一范围时,液滴的侧面图像严重受到侧面光照和样品反光的影响,采用传统侧视成像的方式很难再获得准确的液滴边缘轮廓,这会直接影响接触角的拟合计算。

        解决极低接触角的测量问题,采用俯视成像方式是一种非常可靠的测量方法。俯视测量法是通过从液滴正上方观测在固体表面上的液滴形状来获得液滴接触角的测量方法。

        下图是使用侧视法和俯视法对同一液滴同时拍照得到的照片。显然在接触角 5°左右时侧视法的照片液滴轮廓已经模糊,软件无法自动准确的计算出液滴的边界,而俯视法液滴的三相接触线轮廓清晰可见。

       俯视法接触角测量仪测量范围广,尤其是接触角值极小时依然能够得到准确可靠的测量结果。在此类应用中俯视法和传统侧视法相比,有着明显的优势,是测量超亲水材料接触角的Z佳选择。

       受益于二十世纪末计算机速度的大幅提高和高分辨率数码相机的出现,使得我们对图像数据求解上述方程成为了可能。

       简单地说,在已知液体表面张力和密度的前提下,如果我们能够控制液滴的体积并且精确的测量液滴和材料表面三相接触线的形状尺寸,我们就可以利用 Laplace-Young 模型计算出液滴的三维轮廓,从而准确的得到接触角数值。

       下图为使用侧视法和俯视法对同一液滴同时测量接触角得到的结果。

注意:根据接触角不同计算模型的特点,一般来说在材料表面均一性较好的情况下,侧视法测量接触角在 0~180°范围内都可以使用,并且在 130°以上时侧视法测量结果更为可靠;俯视法测量接触角在 0~180°范围内都可以使用,并且在 10°以下时俯视法测量结果更为可靠。


2020-05-19 14:08:28 488 0
接触角测量仪如何可靠地测量超亲水材料的接触角?

      超亲水一般是指水滴能够在材料表面完全铺展开,使接触角等于或者接近于0°。超亲水材料对水的润湿性非常好,水滴在这种材料表面上极易铺展,接触角数值很小,称为极低接触角。

      在不少应用领域遇到的接触角的值会很低,或者要求其值越低越好。比如液晶屏和太阳能电池板的清洗工序就是这样一个比较典型的应用领域,通过对玻璃/金属等表面的清洗以去除上面的油脂等有机、低表面能的污染物,然后通过测量水滴在其上面的接触角来评估或确保清洗的效果。清洗后有机污染物去除的越彻底,材料表面越清洁则接触角数值越小。工艺上往往要求水滴的接触角小于10°甚至更低。

       多数情况下,当接触角低于约 15°时,测量难度将随着接触角角度的减小而急剧升高,准确性和可靠性下降;当接触角低于约 5°时,已几乎很难再得到有意义的结果。这是因为当接触角下降到这一范围时,液滴的侧面图像严重受到侧面光照和样品反光的影响,采用传统侧视成像的方法很难再获得准确的液滴边缘轮廓,这会直接影响接触角的拟合计算。为了解决极低接触角的测量问题,LAUDA Scientific接触角测量仪引入了一种可靠的极低接触角测量方法:俯视成像测量方法。俯视测量法是通过从液滴正上方观测在固体表面上的液滴形状来获得液滴接触角的测量方法。

       下图是使用传统侧视法和俯视法对同一液滴同时拍照得到的照片。显然接触角值在5°左右时侧视法照片的液滴轮廓已经模糊,软件已经无法自动准确的获得液滴的边缘轮廓,而俯视法液滴的三相接触线轮廓清晰可见。

俯视法接触角测量仪测量范围广,尤其是接触角值极小时依然能够得到准确可靠的测量结果。在此类应用中俯视法和传统侧视法相比,有着明显的优势,是测量超亲水材料接触角的优先选择。

根据接触角不同计算模型的特点,一般来说在材料表面均一性较好的情况下,侧视法接触角测量仪测量接触角值在0~180°范围内都可以使用,并且在130°以上时侧视法测量结果更为可靠;俯视法接触角测量仪测量接触角值在0~180°范围内都可以使用,并且在10°以下时俯视法测量结果更为可靠。


2022-11-16 15:21:10 214 0
求助,有谁做超疏水,超疏油材料的
 
2017-05-28 22:58:02 331 1
光学接触角测量仪之俯视法测量超亲水材料接触角

        在很多应用领域会涉及到测量超亲水材料的接触角。比如液晶屏和太阳能电池板的清洗工序。清洗后有机污染物去除的越彻底,材料表面越清洁则接触角数值越小。工艺上往往要求水滴的接触角小于10°甚至更低。

        利用传统的侧视法接触角测量仪测量接触角,如果接触角低于15°,测量难度随着接触角角度的减小而急剧升高,准确性和可靠性下降;当接触角低于约5°时,几乎很难再得到有意义的结果。对于测量极低接触角,俯视测量法是一种非常可靠的测量方法。俯视测量法是通过从液滴正上方观测在固体表面上的液滴形状来获得液滴接触角的测量方法。

        侧视法和俯视法对同一液滴同时拍照得到的图片如下图所示,接触角5°左右时侧视法的液滴轮廓已经模糊,软件无法自动准确地计算出液滴的边界,而俯视法液滴的三相接触线轮廓清晰可见。


        俯视法接触角测量仪测量范围广,尤其是接触角值极小时依然能够得到准确可靠的测量结果。在此类应用中俯视法和传统侧视法相比,有着明显的优势,是测量超亲水材料接触角的JJ选择。


2021-04-28 10:07:15 424 0
陶瓷能做超疏水吗
 
2018-11-11 08:39:51 306 0
非接触式注射—测量疏水材料的好帮手

       使用光学接触角测量仪测量接触角首先需要将液滴转移到材料表面,但是由于材料的超疏水特性,液滴总是粘附在注射针的顶端,很难转移到材料表面。如果过分增大液滴的体积,利用重量把液滴转移下来,过大的液滴会增加准确测量接触角的难度。有人不得不用手指轻弹注射针抖落液滴,这也不是规范的实验操作。非接触式注液是目前解决这个问题的好方法。

       非接触式注液是指在注射器上安装一个针嘴,通过注射泵的脉冲推射液滴,使液滴直接落到材料表面上。这种注液方式完全避免了液滴在注射针针头上的黏附,彻底解决了液滴转移的问题。

       非接触式注液打破了传统注射单元只能控制注射速度的局限,WM地将注射速度和注射加速度结合在一起,解决了超疏水材料接触角测量的ZD障碍—液滴“包针”问题。



2021-01-04 10:52:34 341 0
论文中水下超疏油的接触角怎么测量
 
2018-12-15 12:43:31 984 0
亲水材料测量动态接触角有意义么
 
2017-10-30 00:33:31 541 1
谈接触角测量的重复性

       如果假设涉及的是理想、WM的样品表面,那么这里的重复性所指的纯粹是测量方法的重复性。在这种情况下,目前好的仪器可以达到的测量测量重复性在0.1-0.3°。而这一结果也得到许多实际测量的支撑,有不少学者研究过液体在相当WM的固体样品表面(同一晶面)的接触角值,测量结果的重复性基本上符合这里提及的数值。

 

       对于通常的样品表面,我们遇到过的比较WM的工业产品表面的接触角测量的可重复性在1°以内(接触角值在100-120°范围),这一重复性包括前进接触角测量的可重复性和采用固定操作步骤而获得的所谓的静态接触角值的可重复性。但我们也时常遇到一些样品,即使同样采用固定操作步骤,获得的静态接触角值的可重复性或波动幅度在3-5°。

 

       对于普通的表面,如果其接触角滞后性的幅度在几十度的范围,一般情况下,前进接触角值的可重复性要比通过简单测量获得的静态接触角值的可重复性好得多。后者的可重复性,即使采用固定操作步骤,在很大程度上取决于难免存在的、微小的操作上的差异可能对液滴ZH展现的接触角值的影响,而这又与样品本身的属性紧密相关。

 

       另外,前面讨论的结论都是基于样品表面属性基本均匀(化学/物理/几何均匀性)的前提。如果样品表面本身就不符合这一前提,那么测量得到的数值的波动幅度不但包含了前面提及的测量的因素,更是包括了样品表面本身的属性波动,这也是为什么通过测量液滴在固体表面不同位置上的接触角值,可以样品对表面均一性或不均一性进行表征的基础。


2020-09-21 11:05:02 302 0
超疏水和有机硅防水剂是同样道理吗
 
2018-11-15 00:11:10 298 0
高分子材料的接触角一般怎样测量
 
2018-12-07 15:23:24 533 0

1月突出贡献榜

推荐主页

最新话题