仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

【动态】剑桥大学举办新型时间分辨阴极荧光测量系统Allalin Chronos安装交付仪式

Quantum Design中国子公司 2019-12-25 11:18:16 594  浏览
  •      2019年9月,剑桥大学Rachel Oliver教授及其团队聚集了来自英国科学和工业界的50多名研究人员,为其全新的时间分辨阴极荧光测量系统Allalin Chronos的顺利安装和交付使用举行了盛大的开幕式!

     

         剑桥大学物理科学学院院长Lindsay Greer教授主持开幕仪式,并对这台设备获得的时间分辨阴极荧光结果和应用进行了许多深入而热烈的讨论,内容涵盖了从化合物半导体材料和器件到钙钛矿和地质样品的各种材料。Rachel Oliver教授随后介绍了此设备的实用性,强调了此设备的顺利安装必将极大促进英国科学界在相关领域的研究,期待可以得到更多的创新性科研成果!


     

    开幕式现场照片

     

        这款先进的时间分辨阴极荧光测量系统是由瑞士attolight自主研发生产的,Attolight公司CEO Samuel Sonderegger博士应邀参加开幕式,并与到场科学家进行了深入的技术交流和沟通。

     

        作为世界上唯yi一款同时具备时间分辨和空间分辨的阴极荧光测量系统,attolight生产的Allalin Chronos具有如下的独特技术优势和应用特点:


        ☛  Allalin Chronos系统,可实现变温、时间分辨、纳米尺度分辨率的阴极荧光分析。在连续模式下,系统采用高电流密度的肖特基场发射电子枪。在时间分辨模式下,相同的电子枪则为超快激光器所驱动,产生超短电子脉冲。系统独有的GX率定量CL收集系统,有效保障时间分辨阴极荧光光谱测试。

        ☛  激发激光器与探测器之间精确同步,从而使皮秒级的时间分辨阴极荧光分析成为可能。脉冲模式与连续模式之间的切换是自动化的,且仅需要几分钟,这使得系统能够成为wan美的多用户设备,满足不同用户的研究需求和使用要求。

        ☛  Allalin Chronos是专为那些需要获取光谱动力学信息的研究者们而量身打造的,具有纳米级空间分辨率及皮秒级的时间分辨率。系统具有一整套超快探测器,探测波长覆盖紫外至近红外波段(200 nm~1700 nm),尽Z大可能优化您的应用。

        ☛  该系统还可搭配超稳液氦恒温器使用,工作温度覆盖10 K至室温。Allalin Chronos的多功能设计也使它能够执行其他先进的表征测试,例如泵浦/探测光谱及动态SEM。

     

    附1:基于时间分辨阴极荧光光谱的应用及部分实例


    -局域辐射和非辐射载流子寿命的测定

    -半导体异质结中载流子激发动力学的分析

    -先进的泵浦/探测光谱


     

    利用时间分辨CL分析弯曲状态下氧化锌微米带中的激子扩散行为:沿微米带径向三个不同激发区域的时间分辨荧光光谱。根据测试结果,可以建立并验证应力诱导的激子扩散模型。(ACS Nano, 8(4), 3412-3420, 2014)


     

    InGaN/GaN量子阱中局域载流子复合。(Applied Physics Letters 109, 232103 (2016))


     

    在氮化镓中围绕单一位错缺陷的CL强度与有效寿命。(Applied Physics Letters 109, 042101 (2016))


     

    单根InGaN/GaN核/壳微米柱的时间分辨CL衰减及CL成像结果。(Applied Physics Letters 112, 052106 (2018))

     

     

    附2:Rachel Oliver教授利用Attolight阴极荧光光谱仪开展的部分研究工作及链接:


    [1] T. J. Puchtler, A. Woolf, T. Zhu, D. Gachet, E. L. Hu, R. A. Oliver. Effect of Threading Dislocations on the Quality Factor of InGaN/GaN Microdisk Cavities. ACS Photonics, 2015, 2, 137-143.

    (https://pubs.acs.org/doi/abs/10.1021/ph500426g)

     

    [2] T. Zhu, D. Gachet, F. Tang, W. Y. Fu, F. Oehler, M. J. Kappers, P. Dawson, C. J. Humphreys, R. A. Oliver. Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence. Appl. Phys. Lett., 2016, 109, 232103.

    (https://doi.org/10.1063/1.4971366)

     

    [3] C. J. Humphreys, F. C-P. Massabuau, S. L. Rhode, M. K. Horton, T. J. O’Hanlon, A. Kovacs, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, R. A. Oliver. Atomic Resolution Imaging of Dislocations in AlGaN and the Efficiency of UV LEDs. Microsc. Microanal., 2018 ,4, 4-5.

    (https://doi.org/10.1017/S143192761800051X)


    [4] F. C-P. Massabuau, S. L. Rhode, M. K. Horton, T. J. O’ Hanlon, A. Kovács, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, C. J. Humphreys, R. A. Oliver. Dislocations in AlGaN: Core Structure, Atom Segregation, and Optical Properties. Nano Lett., 2017, 17, 4846-4852.

    (https://doi.org/10.1021/acs.nanolett.7b01697)

     

    [5] F. C-P. Massabuau, P. Chen, S. L. Rhode, M. K. Horton, T. J. O’Hanlon, A. Kov´acs, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, C. J. Humphreys, R.A. Oliver. Alloy fluctuations at dislocations in III-Nitrides: identification and impact on optical properties. Proceedings Volume 10532, Gallium Nitride Materials and Devices XIII; 105320R (2018)

    (https://doi.org/10.1117/12.2288211)

     

     

    附3:部分国内专家学者利用Attolight阴极荧光光谱仪开展的研究工作及链接:


    [1] X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J-D. Ganière, J. Feng, W. Guo, Z. Liao, B. Deveaud, D. Yu. Exciton Drift in Semiconductors under Uniform Strain Gradients: Application to Bent ZnO Microwires. ACS Nano, 2014, 8, 3412-3420.

    (https://doi.org/10.1021/nn4062353)

     

    [2] M. Shahmohammadi, G. Jacopin, X. Fu, J-D, Ganière, D. Yu, B. Deveaud. Exciton hopping probed by picosecond time-resolved cathodoluminescence. Appl. Phys. Lett., 2015, 107, 141101.

    (https://doi.org/10.1063/1.4932098)

     

    [3] Y. Song, L. Zhang, Y. Zeng, L. Qin, Y. Zhou, Y. Ning, L. Wang. Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence. Materials 2018, 11(6), 1049.

    (https://doi.org/10.3390/ma11061049)

     

    [4] X. Xie, B. Li, Z. Zhang, S. Wang, D. Shen. Controlled compensation via nonequilibrium electrons in ZnO. Sci. Rep., 2018, 8, 17020.

    (DOI:10.1038/s41598-018-35178-w)


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

【动态】剑桥大学举办新型时间分辨阴极荧光测量系统Allalin Chronos安装交付仪式

     2019年9月,剑桥大学Rachel Oliver教授及其团队聚集了来自英国科学和工业界的50多名研究人员,为其全新的时间分辨阴极荧光测量系统Allalin Chronos的顺利安装和交付使用举行了盛大的开幕式!

 

     剑桥大学物理科学学院院长Lindsay Greer教授主持开幕仪式,并对这台设备获得的时间分辨阴极荧光结果和应用进行了许多深入而热烈的讨论,内容涵盖了从化合物半导体材料和器件到钙钛矿和地质样品的各种材料。Rachel Oliver教授随后介绍了此设备的实用性,强调了此设备的顺利安装必将极大促进英国科学界在相关领域的研究,期待可以得到更多的创新性科研成果!


 

开幕式现场照片

 

    这款先进的时间分辨阴极荧光测量系统是由瑞士attolight自主研发生产的,Attolight公司CEO Samuel Sonderegger博士应邀参加开幕式,并与到场科学家进行了深入的技术交流和沟通。

 

    作为世界上唯yi一款同时具备时间分辨和空间分辨的阴极荧光测量系统,attolight生产的Allalin Chronos具有如下的独特技术优势和应用特点:


    ☛  Allalin Chronos系统,可实现变温、时间分辨、纳米尺度分辨率的阴极荧光分析。在连续模式下,系统采用高电流密度的肖特基场发射电子枪。在时间分辨模式下,相同的电子枪则为超快激光器所驱动,产生超短电子脉冲。系统独有的GX率定量CL收集系统,有效保障时间分辨阴极荧光光谱测试。

    ☛  激发激光器与探测器之间精确同步,从而使皮秒级的时间分辨阴极荧光分析成为可能。脉冲模式与连续模式之间的切换是自动化的,且仅需要几分钟,这使得系统能够成为wan美的多用户设备,满足不同用户的研究需求和使用要求。

    ☛  Allalin Chronos是专为那些需要获取光谱动力学信息的研究者们而量身打造的,具有纳米级空间分辨率及皮秒级的时间分辨率。系统具有一整套超快探测器,探测波长覆盖紫外至近红外波段(200 nm~1700 nm),尽Z大可能优化您的应用。

    ☛  该系统还可搭配超稳液氦恒温器使用,工作温度覆盖10 K至室温。Allalin Chronos的多功能设计也使它能够执行其他先进的表征测试,例如泵浦/探测光谱及动态SEM。

 

附1:基于时间分辨阴极荧光光谱的应用及部分实例


-局域辐射和非辐射载流子寿命的测定

-半导体异质结中载流子激发动力学的分析

-先进的泵浦/探测光谱


 

利用时间分辨CL分析弯曲状态下氧化锌微米带中的激子扩散行为:沿微米带径向三个不同激发区域的时间分辨荧光光谱。根据测试结果,可以建立并验证应力诱导的激子扩散模型。(ACS Nano, 8(4), 3412-3420, 2014)


 

InGaN/GaN量子阱中局域载流子复合。(Applied Physics Letters 109, 232103 (2016))


 

在氮化镓中围绕单一位错缺陷的CL强度与有效寿命。(Applied Physics Letters 109, 042101 (2016))


 

单根InGaN/GaN核/壳微米柱的时间分辨CL衰减及CL成像结果。(Applied Physics Letters 112, 052106 (2018))

 

 

附2:Rachel Oliver教授利用Attolight阴极荧光光谱仪开展的部分研究工作及链接:


[1] T. J. Puchtler, A. Woolf, T. Zhu, D. Gachet, E. L. Hu, R. A. Oliver. Effect of Threading Dislocations on the Quality Factor of InGaN/GaN Microdisk Cavities. ACS Photonics, 2015, 2, 137-143.

(https://pubs.acs.org/doi/abs/10.1021/ph500426g)

 

[2] T. Zhu, D. Gachet, F. Tang, W. Y. Fu, F. Oehler, M. J. Kappers, P. Dawson, C. J. Humphreys, R. A. Oliver. Local carrier recombination and associated dynamics in m-plane InGaN/GaN quantum wells probed by picosecond cathodoluminescence. Appl. Phys. Lett., 2016, 109, 232103.

(https://doi.org/10.1063/1.4971366)

 

[3] C. J. Humphreys, F. C-P. Massabuau, S. L. Rhode, M. K. Horton, T. J. O’Hanlon, A. Kovacs, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, R. A. Oliver. Atomic Resolution Imaging of Dislocations in AlGaN and the Efficiency of UV LEDs. Microsc. Microanal., 2018 ,4, 4-5.

(https://doi.org/10.1017/S143192761800051X)


[4] F. C-P. Massabuau, S. L. Rhode, M. K. Horton, T. J. O’ Hanlon, A. Kovács, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, C. J. Humphreys, R. A. Oliver. Dislocations in AlGaN: Core Structure, Atom Segregation, and Optical Properties. Nano Lett., 2017, 17, 4846-4852.

(https://doi.org/10.1021/acs.nanolett.7b01697)

 

[5] F. C-P. Massabuau, P. Chen, S. L. Rhode, M. K. Horton, T. J. O’Hanlon, A. Kov´acs, M. S. Zielinski, M. J. Kappers, R. E. Dunin-Borkowski, C. J. Humphreys, R.A. Oliver. Alloy fluctuations at dislocations in III-Nitrides: identification and impact on optical properties. Proceedings Volume 10532, Gallium Nitride Materials and Devices XIII; 105320R (2018)

(https://doi.org/10.1117/12.2288211)

 

 

附3:部分国内专家学者利用Attolight阴极荧光光谱仪开展的研究工作及链接:


[1] X. Fu, G. Jacopin, M. Shahmohammadi, R. Liu, M. Benameur, J-D. Ganière, J. Feng, W. Guo, Z. Liao, B. Deveaud, D. Yu. Exciton Drift in Semiconductors under Uniform Strain Gradients: Application to Bent ZnO Microwires. ACS Nano, 2014, 8, 3412-3420.

(https://doi.org/10.1021/nn4062353)

 

[2] M. Shahmohammadi, G. Jacopin, X. Fu, J-D, Ganière, D. Yu, B. Deveaud. Exciton hopping probed by picosecond time-resolved cathodoluminescence. Appl. Phys. Lett., 2015, 107, 141101.

(https://doi.org/10.1063/1.4932098)

 

[3] Y. Song, L. Zhang, Y. Zeng, L. Qin, Y. Zhou, Y. Ning, L. Wang. Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence. Materials 2018, 11(6), 1049.

(https://doi.org/10.3390/ma11061049)

 

[4] X. Xie, B. Li, Z. Zhang, S. Wang, D. Shen. Controlled compensation via nonequilibrium electrons in ZnO. Sci. Rep., 2018, 8, 17020.

(DOI:10.1038/s41598-018-35178-w)


2019-12-25 11:18:16 594 0
时间分辨荧光?
时间分辨荧光测试是固体样品还是液体啊?
2017-11-25 10:57:18 537 1
shouchuang的时间分辨发射光谱(TRES)新型系统横空出世

日前,德国PicoQuant意大利NIREOSMicro Photon Devices公司联合开发了一种基于干涉仪记录时间分辨发射光谱(TRES全新紧凑型系统,系统搭建的模块分别由这三家公司提供。

时间分辨发射光谱(TRES新型系统基于NIREOS研发的超稳型干涉仪GEMINI,它能直接将样品的荧光发射光谱和荧光寿命进行Mapping,具有高时间和高光谱分辨率(即TRES等特点,也正是因为这些特点时间分辨发射光谱(TRES)新型系统将光谱的变化过程直接提升到了ps量级的分辨率。

该系统功能非常强大,但光路极其简单。在样品测试中信号光通过NIREOS 的紧凑和超稳定的GEMINI干涉仪获得高分辨率的全光谱信息Micro Photon DevicesPDM系列探测器进行单光子检测Z后,经过PicoQuant时间相关单光子计数器(TCSPCPicoHarp 300获得高时间分辨率的荧光寿命信息,Z终获得时间分辨发射光谱(TRES

具体光路示意和探测及分析,请参见下图所示:

1:光路示意

2功能简介

3软件界面

如需了解更多该系统的完整实验光路和功能演示视频相关资料联系我们!


2020-05-27 13:39:28 537 0
时间分辨荧光免疫层析技术平台

      随着科技的发展,即时诊断领域中的免疫层析技术,从diyi代胶体金、彩色乳胶到第二代荧光微球技术,实现了从定性到定量分析的飞跃。而时间分辨荧光免疫层析技术则更进一步,提升了检测的稳定性和灵敏度。 
  时间分辨荧光免疫分析(TRFIA)是在传统荧光分析的基础上创立的一种新型非放射性免疫分析技术。TRFIA以含有镧系稀土元素的纳米微球作为标记物的,根据镧系金属螯合物荧光持续时间长且Stokes位移大,用时间分辨技术测量荧光,有效排除非特异性荧光的干扰,具有灵敏度高、特异性强和稳定性好等特点。


      敏捷生物开发的新一代时间分辨荧光免疫层析平台,实现了从diyi代胶体金技术到第三代时间分辨荧光技术的飞跃,大大提高了即时诊断的检测灵敏度和检测线性范围,并实现了即时诊断的精确定量。该平台具有操作简便、快速、成本低、试剂稳定、便于保存和携带、检测结果可追溯等优点,可广泛应用于医学健康、海关检疫、农牧业、林业、消防、环境和食品检测等多领域。

2019-08-21 14:05:33 468 0
推介系统」时间分辨荧光共聚焦显微成像及光谱系统TRPL Ma

TRPL Mapping系统简介:
时间分辨荧光共聚焦显微成像及光谱系统 MicroTime100 & FluoTime300将正置共聚焦荧光寿命显微镜和荧光寿命光谱仪结合在一起,能实现几百nm的空间分辨率和ps~s的荧光寿命测试和光谱测试。能用于检测:荧光共聚焦成像、荧光寿命成像、时间分辨光谱、稳态激发/发射谱、时间分辨荧光共聚焦显微光谱、自由选取ROI的微区(时间分辨)荧光成像和(时间分辨)光谱,并且支持升级单分子光谱功能(闪烁,反聚束)、拓展了FLIM和红外部分,完全适用于诸多薄膜、纳米材料的研究,是研究时间分辨光致发光的理想工具。

TRPL Mapping系统工作原理图:

TRPL Mapping系统产品组合:

主要特点:
•  在共聚焦成像基础上,可选点做微区PL、TRPL测试
•  半导体激光器波长从375nm到1060nm可选
•  可配置多个单光子探测器,用于反聚束检测
•  纳米级XYZ 扫描台
•  几百nm的空间分辨率,皮秒到秒级别的寿命测量范围
•  探测波长范围从350nm至1000nm可选,可扩展至1700nm
•  高配版光谱仪支持氙灯激发,低温和量子产率扩展

主要功能:
• 荧光寿命成像 (FLIM)
• 磷光寿命成像(PLIM)
• 荧光共振能量转移(FRET)
• 模式匹配分析
• 时间分辨光致发光(TRPL)
• TRPL 成像
• 反聚束效应

主要应用:
• 单分子光谱/探测
• 单线态氧研究
• 荧光上转换
• 荧光各向异性研究
• 稳态荧光光谱测量
• 量子产率测量
• 光化学研究
• LEDs,OLED,量子点检测

应用实例:
1、TRPL for Semiconductor Analysis—Device Architecture Characterization
用于半导体分析的TRPL——器件结构表征

2、CIGS MAPPING
对CIGS材料的mapping,通过荧光寿命的分析,可以直观看出缺陷

3、perovskite solar cells

4、Carrier diffusion
GaAsP 量子阱系统中的载流子扩散

卤化物钙钛矿晶体中的载流子扩散



通过对时间和三维空间的4维数据的采集,可以可视化半导体/太阳能电池不同区域和深度的载流子扩散。因此,它们可以揭示载流子扩散的局部变化以及诸如载流子缺陷和晶体边界等微尺度的异质性。

如需了解更多详情,请随时咨询我们的销售工程师!
2022-01-12 09:51:43 453 0
时间分辨荧光免疫分析仪有哪些品牌
 
2017-01-22 02:01:52 438 1
化学发光法与时间分辨荧光分析法谁Z好
 
2018-11-10 18:17:07 241 0
THALES向ELI-NP成功安装交付2×10拍瓦激光系统

法国泰雷兹公司(THALES)开发的世界上Z强大、创纪录的2×10拍瓦峰值功率激光系统HPLS,已于2019年10月11日被罗马尼亚国家物理和核工程研究所Horia Hulubei(IFIN-HH)正式验收通过。而位于罗马尼亚的欧盟ELI-NP(极端光基础设施-核物理),近日也成功完成了世界上Z强大的激光器——高功率激光系统(HPLS)的调试。ELI-NP HPLS现在能够提供脉宽<25fs三种峰值功率2×10 PW@每分钟1发、2×1 PW@1 Hz和2×100 TW@10 Hz的超快chao强激光

据了解,该项目经过六年的开发和整合,包括在罗马尼亚Magurele的ELI-NP(极端光基础设施-核物理)驻场三年,Z终由法国泰雷兹公司(THALES) LAS和罗马尼亚Thales Systems工程师参与了Z后测试与验收工作,于10月上旬交付给IFIN-HH并通过验收。同时,法国泰雷兹公司(THALES) 也完成了对该系统全面性能的评估以及客户培训。

     来自IFIN-HH和ELI-NP项目的负责人Nicolae Victor Zamfir教授评价:“ HPLS(高功率激光系统)实施的成功是ELI-NP与Thales在2013年开始合作并产生的出色成果。”而项目经理François Lureau则说:“非常感谢来自法国和罗马尼亚的所有Thales团队,不仅出色的完成了合同承诺,还获得客户的高度赞赏与信赖,同时也取得了无与伦比的技术成果。

IFIN-HH在罗马尼亚开发的核物理领域独特新颖的高级技术和基础研究设施中,Thales系统提供了核心设备。如今,这种基础设施不仅为国际科学界提供了很多机会,而且成就了前所未有的强度2×10 PW和1023 W / cm2探索激光物质的相互作用,并为使用高强度激光系统的新应用打开了大门。

此外,ELI-NP HPLS(高功率激光系统)的应用有LDNP激光驱动核物理、强场物理和QED量子电动力学实验、激光伽马综合实验、能源/加速器和空间应用的极端环境中的材料研究、NRF核共振荧光实验、GBS伽玛射线束工业应用、医用同位素生产等。


2020-05-21 14:23:13 347 0
雷达物位计的时间分辨能力
一般的雷达物位计的分辨力是3mm,来回两个行程也就是6mm 光在空气中速度是30万KM每秒 这样雷达对时间的分辨能力不是要达到(0.006/300000000)秒? 即0.00000000002秒,是怎么做到的? 是不是有其他的方法?
2018-12-02 04:50:54 367 0
再创佳绩| 时间分辨阴极荧光光谱为您揭露InGaN材料 “Green Gap”的神秘面纱

引言 

InxGa1-xN(以下简称为InGaN材料具有0.7 eV~3.5 eV可调的直接带隙能量,被广泛应用于光电子器件领域。其中,利用InGaN制备GX的蓝光或绿光发光二极管(light emitting diodesLED)是一项具有广阔前景的应用。然而,该领域的发展也不是一帆风顺,诸多挑战频频出现限制了这项技术的快速崛起。其中之一便是“Green Gap”问题,即室温下器件在绿光波段的发光效率远低于蓝光波段的发光效率。据已有报道显示,蓝光LED的外量子效率峰值可以达到86%,而绿光仅为44%。造成近2倍外量子效率峰值差的原因是目前科学家争论的热点。有科学家表明,绿光发射大都需要在低温生长工艺下制备得到高铟含量材料,这些材料通常会形成许多缺陷,例如位错(螺旋位错、失配)、沟槽缺陷及点缺陷等。缺陷可能会成为非辐射复合ZX,或辅助载流子从空间电荷区隧穿到InGaN有源区,并伴随有非辐射复合,进而造成发光效率低下。因此,为了推进GX绿光发光二极管的发展,需要深入研究缺陷类型对“green gap”的影响,从原子层面揭示相关机制。

成果简介

针对上述问题,F. C. Massabuau等人利用阴极荧光光谱(cathodoluminescenceCL)、时间分辨阴极荧光光谱(time-resolved cathodoluminescenceTR-CL)及分子动力学模拟手段,研究了铟含量在5%~15%的厚InGaN层中的螺旋位错的光学与结构性质,并对“Green Gap”InGaN的缺陷之间的关系进行了讨论。实验结果表明,在上述考量成分范围内的样品中,铟原子在位错附近(距位错核纳米范围内)分离。这一现象有助于形成In-N-In链或原子凝聚物,从而可以在位错处局域载流子并且能够YZ非辐射复合。该团队还注意到随着铟含量的增加,位错周围的暗晕成为一重要特征,激起了团队的好奇,并对这一特征的物性进行了深入分析。对于低铟组分样品(x<12%),团队将暗晕归因于V型凹坑平面以下较低组分材料的生长;对于高组分样品(x>12%),暗晕的起源尚未确定,可能是由于V型坑的面上位错束的形成,或是表面电位的变化,亦或是载流子扩散长度的增加。F. C. Massabuau等人相信,上述研究内容对阐明位错在发光二级管中的“Green Gap”问题有极大的推进作用。相关工作已经发表在Journal of Applied Physics上,有关原文更多精彩的内容,可参考 https://doi.org/10.1063/1.5084330

F. C. Massabuau等人的工作中,选用了瑞士Attolight公司生产的Allalin 4207 SEM-CL系统进行时间分辨阴极荧光光谱的测试。该仪器极高的光谱分辨率和空间分辨率是揭示InGaN表面缺陷与其发光效率之间关系的关键。更为重要的是,该仪器皮秒级的时间分辨精度为实验揭示InGaN表面缺陷区域载流子的动力学机制提供了强有力地帮助,推进了InGaN制备GX绿光发光二极管的研究。

做为世界上shou个时间分辨SEM-CL的制造商,Attolight公司的Allalin 4207 SEM-CL系统主要包含三个模块:激发模块、Attolight SEM-CL模块、探测模块。激发模块的核心是利用定制的三倍频掺铒光纤激光器产生紫外波段脉冲(波长355 nm5 ps,重复频率80 MHz)。将生成的紫外波段脉冲耦合到SEM-CL系统当中,并以紫外光辐照场发射电子枪,从而获得皮秒级的电子脉冲。Attolight SEM-CL系统将消色差反射透镜(na=0.71)集成到扫描电镜的物镜中,从而使它们的焦平面对准,并有效减少了其他繁冗的对准操作。为了能够在低温下进行稳定而精确的测试,系统特别集成有冷台,工作温度20K300K 。其探测系统有两种模式,CL信号经切尔尼特纳型单色仪(Horiba ScientificiHR 320)衍射后,由Andor Newton 920 CCD相机收集信息。而对于时间分辨测试,则以Optronis SC-10型条纹相机在光子计数模式下进行。该仪器工作模式多种多样,包括光学显微镜成像、阴极荧光测量(多色,单色和高光谱)、二次电子测量、时间分辨阴极荧光(时间分辨选项) 二次电子和阴极荧光同步等测量。同时,可提供300 μm直径的光学和电子视场,优于10 nm的空间分辨率和10 ps的时间分辨率 以及Z多6自由度位移控制。基于上述优势,Allalin 4207 SEM-CL系统在LED性能和可靠性评价,GaN功率晶体管,线位错密度,载流子寿命和动力学,太阳能电池的效率,纳米尺度光电器件等领域大放异彩。是进行各种半导体和光电材料诸如载流子寿命和动力学研究等的wan美工具。

图文导读

1 InGaN样品的(aAFM图像;(b)连续波模式CL(含强度信息)图像;(c)连续波模式CL(含峰值波长信息)图像;(d)脉冲模式CL(含强度信息)图像;(e)脉冲模式CL(含峰值波长信息)图像;(f)条纹相机采集的图像信息;(g)由图(f)中抽取的弛豫曲线

 

2 波长与(a)弛豫时间及(b)上升时间的依赖关系

  

3 室温下样品缺陷的亮点周围区域(a)与亮点区域(b)的弛豫时间与波长关系曲线

【产品相关信息】

时间分辨精细阴极荧光分析系统:http://www.qd-china.com/products2.aspx?id=251


2019-08-19 14:41:52 432 0
动态表面张力的时间依赖性

       表面张力值反映的是分子从一液体的体相转移到表面层后,其(相较于处在体相时)所拥有的额外能量。这一额外能量与表面层的当前状态紧密相关,后者包括分子的组成/分布/排列/取向等。当一新的表面从开始形成到到达一相对平衡的稳定状态需要一定的时间,对于单组分的液体,涉及的往往只是表面层分子的分布、排列和取向,而这个过程一般可以在瞬间内完成。但是对于多组分的液体(如溶液/含有表面活性剂的溶液),体相中的不同组分首先需要通过扩散到达表面层以下的过渡区域,然后再通过表面吸附过程进入表面层。在表面层,不同组分的分子还需要经历分布/排列/取向等过程,以ZZ到达相对稳定的平衡状态。取决于液体所含的组分的属性(分子量/化学结构/构型/溶液粘度等),这一整个过程可以在几毫秒内完成,也可以持续几秒、几分、几小时、甚至几天。所以表面层的状态是一时间函数,反映这一状态的表面张力一般都表现出随时间而变化的动态特性,这一时间依赖性也被称为动态表面张力(dynamic surface tension)。通过对一体系动态表面张力的测量,可以获得与分子扩散、分子在表面层的分布/排列/取向等动态过程有关的速度/时间参数。

2020-10-12 12:42:01 339 0
微秒级时间分辨红外光谱仪简介
微秒级时间分辨红外光谱仪简介
2019-11-20 16:23:20 751 2
时间测量的示波器—时间测量
 
2018-12-04 18:24:30 253 0
JEOL IDES 新品-JEM-2100时间分辨电子显微镜

    JEOL IDES 新产品:JEM-2100 时间分辨电子显微镜

    IDES是时间分辨透射电子显微镜(TEM)领域的ling导者和先驱,专门研究脉冲激光和高速静电束消隐及偏转技术。IDES的产品在TEM的特殊空间分辨率的基础上增加了时间分辨功能,能够在非常快的时间尺度范围内进行新的应用和对样品进行动态研究。

    本次推出的JEM-2100时间分辨电子显微镜是利用一个或多个激光器进行pump-探针实验而设计的用于研究样品中的瞬态现象。 用户可以直接用激光激发样品,紫外激光产生光电子探针脉冲,在成像、衍射、光谱或光谱成像模式下对样品进行探测。 该电镜非常通用,可以选择多种不同激光类型的光学配置来进行ps皮秒频闪观测、ns纳秒频闪观测、ns纳秒单发(SS) 和ns纳秒 “电影模式(MM)” 测量,及常规热电子模式。该电镜在JEM-2100Plus的基础上,引入激光束,指向阴极(电子源)和样品,激光光学系统为标准配置,各种激光为可选件。


2020-06-11 15:34:03 435 0

5月突出贡献榜

推荐主页

最新话题