仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

大连理工大学宋锋玲教授《JACS》:给肿瘤细胞按一个“电子泵”增强光动力治疗 效果 | 前沿用户报道

HORIBA 科学仪器事业部 2023-04-17 13:53:15 158  浏览
  • 小时候在农村,看到田里灌溉使用的水泵,就会赞叹,农民终于不用再使用扁担,一桶一桶挑水来浇地了。泵,不仅节省了人力,更最主要是能将水塘里的水源源不断地供给秧苗享用。惊叹之余,也会好奇:为什么经过“它”,水就可以从低洼的水塘流向高处的庄稼地?


    最近,大连理工大学宋锋玲教授课题组在Journal of the American Chemical Society上面发表了题为“Integration of TADF Photosensitizer as “Electron Pump” and BSA as “Electron Reservoir” for Boosting Type I Photodynamic Therapy”的文章(DOI: 10.1021/jacs.3c01042)。

    该文作者思考:Type I型光敏化过程是否也可以通过一个类似的泵,来加速电子转移,从而增强光动力治 疗 效果?基于对Type I型光敏化机制中电子转移热力学问题的研究,该文作者充分利用热激活延迟荧光性质(TADF)光敏剂独有的激发态得电子能力,同时与牛血清蛋白(BSA)的富电子特性,巧妙地结合于一体,共同加速光敏剂的电子转移能力,提出了增强肿瘤光动力治 疗 效果的新策略。

    Type I 型光敏剂因其对氧气比较低的依赖性,可以解决 Type II 型光敏剂因实体肿瘤乏氧带来的预后不良的问题,逐渐成为光动力治 疗领域的研究热点。Type I 型光动力治 疗机制的核心是光敏剂的电子转移能力。这个能力包括两个方面,一方面是光敏剂从底物中获得电子,另一方面是光敏剂要将捕获的电子提供给 O2 ,从而形成活性氧超氧阴离子自由基(O2•−)。然而,大多数现有的光敏剂只能单独满足其中一个方面的能力。


    在本文中,作者详细探讨了一种 TADF 光敏剂PS在I型光敏化过程中的电子转移能力。由于单线激发态 S1 和三重激发态 T1 之间比较小的能极差,因此这个 TADF 光敏剂 PS 具有较大的光激发能量(ET)。在热力学上 PS 表现出类似水泵的“电子泵”的特殊电子转移能力,因为它激发态下的还原电位足够高(正),可以从底物中获得电子,并且在基态条件下还原电位也足够低(负),将电子转移到 O2 形成 O2•−。此外,我们选择了牛血清白蛋白(BSA)作为“电子储存库”,与“电子泵” PS 完 美配合。BSA不仅具有优良生物相容性和肿瘤靶向富集的优点,同时其富电子氨基酸结构组成可以作为电子的有效来源。同时 PS 和BSA 的紧密结合作用也有利于分子间的电子传递过程。实验表明,PS/BSA 复合物可显著促进I型 PDT 过程生成大量超氧阴离子(O2•−),并且,通过分子对接模拟、瞬态光谱、电化学进一步仔细地揭示了潜在的敏化机制。


    随后,我们通过制备纳米光敏剂 PS@BSA ,将 BSA 和 PS 的这些电子转移增强作用整合到一个纳米粒子系统中。证实了其在体外肿瘤细胞中增强的 PDT 杀伤效果,特别是在缺氧条件下依然可以发挥很好的治 疗 效果。小鼠体内肿瘤模型同样验证了PS@BSA 在肿瘤区域的优异富集和高效的 PDT 效率。这些结果有力证实了我们提出的这种新型 Type I 型光敏剂系统对乏氧肿瘤的出色靶向能力和治 疗 效率。这项工作提出一种新的构建高效纳米光敏剂的有效策略,即采用 BSA 作为 TADF 光敏剂的功能载体来促进I型 PDT 过程。这项工作有望激发更多的 TADF 光敏剂发挥“电子泵”作用,开展的 Type I 型 PDT 研究。


    图1 光敏剂PS 的电化学还原电势简易图示,描述Type I型光敏化过程中的电子转移过程。


    图2 TADF光敏剂PS作为“电子泵”和BSA作为“电子水库”的简易示意图。


    参考文献

    Integration of TADF Photosensitizer as “Electron Pump” and BSA as “Electron Reservoir” for Boosting Type I Photodynamic Therapy,Wenlong Chen, Zehui Wang, Mingyu Tian, Gaobo Hong, Yingnan Wu, Mengzhang Sui, Miaomiao Chen, Jing An, Fengling Song, and Xiaojun Peng,Journal of the American Chemical Society. 


    DOI: 10.1021/jacs.3c01042


    仪器推荐

    DeltaFlex全自动模块化荧光寿命光谱仪


    Delta系列凝聚了HORIBA Scientific 40多年的寿命系统研发经验,它可以提供快速、高灵敏度和高性价比的寿命解决方案。


    本文中,PS和PS@BSA的荧光寿命检测是通过HORIBA DeltaFlex全自动模块化荧光寿命光谱仪实现的。DeltaFlex全自动模块化系统能够自动识别并控制添加到仪器中的组件。在使用NanoLED短寿命光源和SpectraLED长寿命光源测试时,DeltaFlex能够快速切换光源,实现短寿命和长寿命测试。 


参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

大连理工大学宋锋玲教授《JACS》:给肿瘤细胞按一个“电子泵”增强光动力治疗 效果 | 前沿用户报道

小时候在农村,看到田里灌溉使用的水泵,就会赞叹,农民终于不用再使用扁担,一桶一桶挑水来浇地了。泵,不仅节省了人力,更最主要是能将水塘里的水源源不断地供给秧苗享用。惊叹之余,也会好奇:为什么经过“它”,水就可以从低洼的水塘流向高处的庄稼地?


最近,大连理工大学宋锋玲教授课题组在Journal of the American Chemical Society上面发表了题为“Integration of TADF Photosensitizer as “Electron Pump” and BSA as “Electron Reservoir” for Boosting Type I Photodynamic Therapy”的文章(DOI: 10.1021/jacs.3c01042)。

该文作者思考:Type I型光敏化过程是否也可以通过一个类似的泵,来加速电子转移,从而增强光动力治 疗 效果?基于对Type I型光敏化机制中电子转移热力学问题的研究,该文作者充分利用热激活延迟荧光性质(TADF)光敏剂独有的激发态得电子能力,同时与牛血清蛋白(BSA)的富电子特性,巧妙地结合于一体,共同加速光敏剂的电子转移能力,提出了增强肿瘤光动力治 疗 效果的新策略。

Type I 型光敏剂因其对氧气比较低的依赖性,可以解决 Type II 型光敏剂因实体肿瘤乏氧带来的预后不良的问题,逐渐成为光动力治 疗领域的研究热点。Type I 型光动力治 疗机制的核心是光敏剂的电子转移能力。这个能力包括两个方面,一方面是光敏剂从底物中获得电子,另一方面是光敏剂要将捕获的电子提供给 O2 ,从而形成活性氧超氧阴离子自由基(O2•−)。然而,大多数现有的光敏剂只能单独满足其中一个方面的能力。


在本文中,作者详细探讨了一种 TADF 光敏剂PS在I型光敏化过程中的电子转移能力。由于单线激发态 S1 和三重激发态 T1 之间比较小的能极差,因此这个 TADF 光敏剂 PS 具有较大的光激发能量(ET)。在热力学上 PS 表现出类似水泵的“电子泵”的特殊电子转移能力,因为它激发态下的还原电位足够高(正),可以从底物中获得电子,并且在基态条件下还原电位也足够低(负),将电子转移到 O2 形成 O2•−。此外,我们选择了牛血清白蛋白(BSA)作为“电子储存库”,与“电子泵” PS 完 美配合。BSA不仅具有优良生物相容性和肿瘤靶向富集的优点,同时其富电子氨基酸结构组成可以作为电子的有效来源。同时 PS 和BSA 的紧密结合作用也有利于分子间的电子传递过程。实验表明,PS/BSA 复合物可显著促进I型 PDT 过程生成大量超氧阴离子(O2•−),并且,通过分子对接模拟、瞬态光谱、电化学进一步仔细地揭示了潜在的敏化机制。


随后,我们通过制备纳米光敏剂 PS@BSA ,将 BSA 和 PS 的这些电子转移增强作用整合到一个纳米粒子系统中。证实了其在体外肿瘤细胞中增强的 PDT 杀伤效果,特别是在缺氧条件下依然可以发挥很好的治 疗 效果。小鼠体内肿瘤模型同样验证了PS@BSA 在肿瘤区域的优异富集和高效的 PDT 效率。这些结果有力证实了我们提出的这种新型 Type I 型光敏剂系统对乏氧肿瘤的出色靶向能力和治 疗 效率。这项工作提出一种新的构建高效纳米光敏剂的有效策略,即采用 BSA 作为 TADF 光敏剂的功能载体来促进I型 PDT 过程。这项工作有望激发更多的 TADF 光敏剂发挥“电子泵”作用,开展的 Type I 型 PDT 研究。


图1 光敏剂PS 的电化学还原电势简易图示,描述Type I型光敏化过程中的电子转移过程。


图2 TADF光敏剂PS作为“电子泵”和BSA作为“电子水库”的简易示意图。


参考文献

Integration of TADF Photosensitizer as “Electron Pump” and BSA as “Electron Reservoir” for Boosting Type I Photodynamic Therapy,Wenlong Chen, Zehui Wang, Mingyu Tian, Gaobo Hong, Yingnan Wu, Mengzhang Sui, Miaomiao Chen, Jing An, Fengling Song, and Xiaojun Peng,Journal of the American Chemical Society. 


DOI: 10.1021/jacs.3c01042


仪器推荐

DeltaFlex全自动模块化荧光寿命光谱仪


Delta系列凝聚了HORIBA Scientific 40多年的寿命系统研发经验,它可以提供快速、高灵敏度和高性价比的寿命解决方案。


本文中,PS和PS@BSA的荧光寿命检测是通过HORIBA DeltaFlex全自动模块化荧光寿命光谱仪实现的。DeltaFlex全自动模块化系统能够自动识别并控制添加到仪器中的组件。在使用NanoLED短寿命光源和SpectraLED长寿命光源测试时,DeltaFlex能够快速切换光源,实现短寿命和长寿命测试。 


2023-04-17 13:53:15 158 0
用户前沿丨黄维院士&陈永华教授最 新Nature

01【导读】钙钛矿太阳能电池(PSCs)的潜在优势之一是能够对前体进行溶液处理并从溶液中沉积薄膜。目前,已经研究了旋涂、刮刀涂、喷涂、喷墨印刷和槽模印刷来沉积混合钙钛矿薄膜。与其他薄膜制造技术相比,丝网印刷具备高图案灵活性、高生产效率和高成本效益。丝网印刷工艺依赖于油墨的高粘度,能够在不受基底和图案限制的情况下制备三维纳米薄膜。这种方法能够实现油墨的印染和良好控制的非接触转移,加快产量并消除通过传统印刷和旋涂工艺制备薄膜中的有害废物。丝网印刷被认为是PSC工业化最有前途的技术。然而,由于钙钛矿油墨的低粘度和不稳定性,通过丝网印刷制备钙钛矿薄膜仍然是一个挑战。


02【成果掠影】近日,南京工业大学黄维院士与陈永华教授联合报道了利用甲基乙酸铵离子液体溶剂制成一个稳定的和粘度可调(40 - 44,000 cP)的的钙钛矿墨水并成功进行了丝网印刷。研究人员证明了对钙钛矿薄膜的厚度和面积控制,并在不同基底上的图案化,印刷速度超过20 cm s-1,油墨使用量接近100%。在环境空气中使用这种沉积方法,无论湿度如何,获得了20.52%(0.05 cm2)和18.12%(1 cm2)的最 佳效率。最值得注意的是,已经成功地探索了在环境空气中用一台机器进行完全丝网印刷的装置,对应的光伏电池在0.05 cm2、1.00 cm2和16.37 cm2面积上的效率分别为14.98%、13.53%和11.80%,同时在最 大功率点下运行300小时后还能保持96.75%的初始效率。相关研究成果以题为“Perovskite solar cells based on screen-printed thin films”发表在知名期刊Nature上。



0【图文导读】



图一、钙钛矿薄膜的丝网印刷方法示意图 © 2022 Springer Nature



图二、钙钛矿油墨和薄膜的丝网印刷 © 2022 Springer Nature



图三、钙钛矿薄膜的丝网印刷图案化 © 2022 Springer Nature



图四、基于丝网印刷薄膜的PSCs性能 © 2022 Springer Nature


04【前景展望】研究人员利用甲基乙酸铵离子液体溶剂制成一个稳定的和粘度可调的的钙钛矿墨水,分三步成功实现了丝网印刷法制备具有任意形状的复杂图案的钙钛矿薄膜。基于此,研究人员制造平面异质结、具有n-i-p器件结构的丝网印刷PSCs,在AM1.5G 100 mW cm-2照明下,获得了20.52%的PCE,JSC为23.12 mA cm-2,VOC为1140 mV,FF为0.779。最值得注意的是,未封装的全丝网印刷PSC的PCE在光照下最 大功率点连续工作300小时后,仍保留了96.75%的初始PCE,表明全丝网印刷PSC具有良好的稳定性。


文献链接:Perovskite solar cells based on screen-printed thin films (Nature 2022, DOI: 10.1038/s41586-022-05346-0)

本文由赛恩斯供稿。


仪器推荐



爱丁堡FS5一体化稳态瞬态荧光光谱仪


南京工业大学黄维院士与陈永华教授研究团队成功制成稳定和粘度可调的钙钛矿墨水并成功进行了丝网印刷。研究成果利用一体化稳态瞬态荧光光谱仪FS5获取瞬态光谱表明丝网印刷可望减少非辐射跃迁重组。爱丁堡FS5作为一体化光谱仪,可完成稳态光谱,瞬态光谱,量子效率等表征,欢迎垂询。





2022-11-16 21:06:49 158 0
苏大廖良生教授Angewandte:高效镧系掺杂钙钛矿基近红外LED,通过量子剪裁实现!| 前沿用户报道

成果简介

钙钛矿纳米晶体(PeNCs)在可见光中具有高效和高色纯度的依尺寸和组成而可调的发光。然而,在近红外(NIR)区域获得高效的电致发光(EL)具有挑战性,限制了其潜在的应用


在这里,我们展示了一种高效的近红外发光二极管(LED),通过将镱离子掺杂到PeNC基质(Yb3+: PeNCs)中,将EL波长延长到1000 nm,这是通过PeNC基质直接敏化Yb3+离子来实现的。高效的量子剪裁工艺使Yb3+: PeNCs的光致发光量子产率(PLQYs)高达126%。



通过卤化物组成工程和表面钝化策略来改善PLQY和电荷传输平衡,我们展示了一种在990 nm中心波长处峰值EQE为7.7%的高效近红外LED,代表了发射波长超过850 nm的最 高效钙钛矿基LED。


创新点:在本研究中,我们将镱离子掺杂到钙钛矿纳米晶体中,使电致发光波长延长至1000 nm卤化物化学计量控制和表面钝化的协同作用使我们能够实现高效的近红外LED,峰值EQE为7.7%,是迄今为止峰值波长超过850 nm的OLED和PeLED中效率最 高的。


图文导读



图1 a) Yb3+:PeNCs的TEM图像和元素映射,TEM图像的插入部分显示了晶体衍射图样。b) XRD图谱,c) IR PLQY, d) PL光谱,e) Yb3+: CsPb(Cl1-xBrx)3 PeNCs的不同卤化物化学计量量的吸收。f) Yb3+: PeNCs的能量转移机制,三种重组途径分别记为(1)、(2)、(3)。g)在所选泵-探头延迟时的TA光谱。h)不同名义掺杂浓度的Yb3+:PeNCs在450nm处的归一化TA信号衰减随时间的变化。


图2 a)基于Yb3+: CsPb(Cl1-xBrx)3 NC发射极的近红外PeLEDs器件结构示意图。b)能带图。c)近红外LED内部光能通道的功率分布。d)基于Yb3+: CsPbCl1-xBrx NC发射器的PeLEDs EQE与J特性,仅考虑近红外峰值计算EQE。e)不同激子波长下PeNC薄膜的PLQY和近红外PeLEDs的峰值EQE(平均值)。f) 3.2 V ~ 6 V不同偏差下对应的EL谱,步长为0.2V。插图显示了在3.2 V电压下工作的PeLED的EL谱。


图3a)插图为BTC的分子结构。b) EQE-电流密度特性。c)原始(蓝色曲线)和钝化(红色曲线)LED器件的峰值EQE直方图。基于原始和钝化Yb3+:PeNCs的纯空穴器件d)和纯电子器件e)的J-V曲线。黑色虚线表示陷阱填充电压。f)我们的设备之间的峰值EQE比较,之前报道的近红外PeLDs和OLED (EL峰值波长超过850 nm)。


图4 a) Yb3+: PeNCs的表面钝化机理。原始Yb3+和钝化Yb3+的XPS谱: Yb 4d; b)Pb 4f5/2和4f7/2 c)的XPS谱. d)硫氰酸苄酯、原始和钝化Yb3+: PeNCs的FTIR透射光谱。e)原始和钝化Yb3+:PeNCs在480 nm波长处获得的瞬态PL衰变。f) PeNCs在480 nm处剩余激子发射的PLQY(蓝色曲线)和Yb3+离子在990 nm处近红外发射的PLQY(粉红色曲线)。


论文信息

Efficient Near-Infrared Electroluminescence from Lanthanide-Doped Perovskite Quantum Cutters


Yan-Jun Yu, Chen Zou, Wan-Shan Shen, Xiaopeng Zheng, Qi-Sheng Tian, You-Jun Yu, Chun-Hao Chen, Baodan Zhao, Zhao-Kui Wang, Dawei Di, Osman M. Bakr, Liang-Sheng Liao


First published: 25 March 2023 https://doi.org/10.1002/anie.202302005



2023-05-30 09:50:54 118 0
大连理工大学软件学院的学院简介
 
2018-12-07 07:41:58 487 0
中科院物理所:纳米级应变直写技术,加速二维材料应变工程技术发展 |前沿用户报道

研究背景及成果


应变工程是指通过拉伸或压缩等应变技术来调控材料性能或优化相关器件性能。近些年来,随着二维材料的兴起,基于它的应变工程研究变得火热起来。但现有的二维材料应变技术(如拉伸衬底、产生气泡等),重复性及灵活性差,因此如何实现微区可控复杂应变成为应变工程发展的重要方向之一。


在此背景下,中科院物理所纳米实验室N10组提出了一种非接触式应变直写技术。该技术可以在二维材料中准确写入纳米到微米尺度设计图案的应变。这项全新应变技术,具备高度的灵活性以及半导体工艺兼容性,有望进一步推进二维材料在纳米机电系统、高性能传感和非传统光伏到量子信息科学等广泛领域的潜在应用。


相关成果"Strain lithography for two-dimensional materials by electron irradiation."已在Applied Physics Letters 上发表。



实验思路及结果验证


光刻胶材料 PMMA(聚甲基丙烯酸甲酯)在电子束的辐照作用下会发生降解(如图1所示),导致体积发生变化。光刻胶自身体积的变化,会进一步使附着在其表面的二维材料以及其它薄膜材料发生形变(如图2所示)。


基于这个原理,中科院物理所研究团队便考虑利用电子束直写设备的高精度图形直写能力,通过调控电子束剂量,创造纳米级应变分布的可控应变结构制备。



图1 光刻胶(PMMA)的电子辐照降解



图2 电子束诱导二维材料应变


实验发现,通过控制电子束辐照剂量,中科院物理所研究人员可以有效控制二维材料的应变程度(如图3所示)。拉曼光谱技术以及光致荧光(PL)光谱技术是研究半导体应变的重要工具,图4展示了“墨西哥帽状”复杂应变的PL光谱空间峰位分布图, HORIBA LabRAM HR Evolution Nano 纳米拉曼光谱仪的强大空间数据采集及后处理能力,进一步揭示了该方法复杂应变的制备能力,即同时制备包含拉伸应变(红移)以及压缩应变(蓝移)结构的能力。



图3 应变调控


图4 复杂应变空间分布


仪器使用评价

“该工作使用 HORIBA 的 LabRAM HR Evolution Nano 纳米拉曼光谱仪,可探测纳米级应变分布,使用便捷;处理空间分布数据的功能非常强大。”



实验室配备的
LabRAM HR Evolution Nano
纳米拉曼光谱仪


如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。



课题组介绍
中科院物理所纳米实验室N10组,主要研究方向有:纳米材料与纳米结构的可控制备、新奇物理特性及器件应用研究;自旋、能谷量子态物性研究及其在量子信息/量子计算的应用;超快磁光激光光谱学;低维/纳米材料物性和器件研究等。


2023-01-08 12:35:25 169 0
Nature Metabolism:AD治疗新策略!张杰教授团队揭示小胶质细胞能量代谢调控新机制

带你看文献,只做纯干货

文献精读第37期

阿尔茨海默病(Alzheimer’sdisease, AD)是一种最为常见的神经退行性疾病,患者表现为进行性的记忆和认知功能丧失。随着全/球人口老龄化的日益加剧,AD患者数量不断增加,但是到目前为止,临床上仍然缺乏能够有效治疗AD的药物或手段。越来越多的证据表明,AD具有代谢性疾病的多种特征。例如,AD患者伴有大脑糖代谢障碍,并且它的发生先于患者认知功能障碍几十年。然而,糖代谢异常在AD发病过程中的作用机制目前仍知之甚少。


2022年10月6日,厦门大学医学院神经科学研究所张杰教授团队在Nature Metabolism杂志上发表题为“Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading toβ-amyloid clearance”的研究论文。文章证实,己糖激酶2Hexokinase2, HK2)通过调节小胶质细胞的能量代谢,在小胶质细胞清除病理性的聚合物和斑块沉积的过程中发挥了重要作用,提示HK2可能是AD治疗的一个关键作用靶点。厦门大学医学院神经科学研究所张杰教授为本论文的通讯作者,冷历歌副教授为本论文的第/一作者及共同通讯作者。


在AD中,小胶质细胞通过消耗三磷酸腺苷(ATP)来清除具有神经毒性的Aβ蛋白低聚物和斑块沉积,这个过程需要大量的ATP。己糖激酶(HK)是葡萄糖代谢途径中的第一个关键酶,能够将葡萄糖转化为葡萄糖-6-磷酸(Glucose-6-Phosphate, G-6-P),促进ATP的产生。HK包含四种亚型(HK1-4),其中HK2是胰岛素敏感组织(如心脏、骨骼肌、脂肪和大脑)中主要的亚型。然而,HK2对AD中小胶质细胞功能的作用尚不清楚。


在该研究中,作者首先检测了在哺乳动物大脑中存在的HK1-3的表达情况,发现HK2在AD患者和AD小鼠模型(5xFAD小鼠)的小胶质细胞中表达特异性增高。随后,作者构建了小胶质细胞HK2特异性敲除的小鼠,并与5xFAD小鼠杂交(CcKO-5xFAD),以观察小胶质细胞中HK2缺失对AD的影响。小胶质细胞中HK2缺失可以减少斑块,并拯救5xFAD小鼠的认知功能障碍。此外,作者进一步利用抑/制剂来抑/制HK2活性,包括氯尼达明和3-溴/丙/酮酸,其中,氯尼达明已用于临床上多种肿瘤的治/疗。通过抑/制HK2激酶活性,作者同样观察到5xFAD小鼠大脑中Aβ斑块减少,以及小鼠的认知缺陷减轻。


图1.小胶质细胞中HK2缺失能够减少Aβ斑块,并拯救5xFAD小鼠的认知功能障碍

小胶质细胞在斑块周围聚集被认为是吞噬清除病理性Aβ斑块沉积的一个关键过程。作者进一步的实验表明,抑制或敲除HK2能够促进小胶质细胞的迁移和吞噬能力,这种迁移和吞噬的过程都需要消耗能量。令人惊讶的是,药物抑制或基因缺失HK2会降低神经元或星形胶质细胞中ATP的产生,但是可以显著增加小胶质细胞中ATP的形成。这可能与大脑小胶质细胞独特的代谢模式有关,抑制HK2信号导致小胶质细胞内脂蛋白脂肪酶(Lipoprotein Lipase, LPL)表达上调,从而触发脂肪酸代谢,迅速提升胞内的ATP水平。最后,作者发现,HK2的两种下游代谢物G-6-P和果糖-6-磷酸(Fructose-6-Phosphate, F-6-P)通过磷酸戊糖途径调节NADPH水平,能够逆转HK2缺乏引起的LPL的升高。

总之,该研究证明了HK2是AD发病过程中糖酵解改变和脂质代谢之间的关键环节。在HK2抑制或缺乏时,小胶质细胞中的ATP水平显著升高,但神经元或星形胶质细胞中并没有。这一发现首次证实,葡萄糖的低代谢可以增加小胶质细胞中ATP的生成。此外,抑制小胶质细胞HK2可有效促进AD小鼠Aβ斑块的吞噬,减轻认知障碍。这些结果表明,以HK2为靶点的基因或药物干预可能是AD治疗的一种新策略。

论文原文链接:

https://doi.org/10.1038/s42255-022-00643-4


团队PI简介


张杰,教授、博导,国家杰出青年科学基金、国家优秀青年科学基金、教育部新世纪优秀人才等获得者。长期从事重大脑疾病比如老年痴呆(AD)、抑郁症等的致病机理和药物开发研究。至今以第一作者或通讯作者发表论文30余篇。近5年张杰教授以通讯作者在国际知名学术期刊(Nature Neuroscience, Neuron, Biological Psychiatry, Cell Reports, PNAS, JNS, JBC,Clinical Cancer Research等)发表多篇论文。热忱欢迎优秀博士后加盟,同时欢迎优秀学子报考厦门大学医学院张杰教授课题组研究生。联系方式:jiezhang@xmu.edu.cn


2022-11-01 16:32:39 302 0
细胞治疗用什么显微镜观察?

倒置荧光显微镜MF52-N应用于细胞

几年来科学家正在开发细胞疗法,希望能治疗多种疾病和疑难杂症。这就需要质量控制和各种有关仪器设备来支持免疫疗法和再生医学的发展。近期,明美上海区域安装倒置荧光显微镜MF52-N,观察mcherry荧光,应用于细胞治疗。

倒置荧光显微镜MF52-N下,细胞均匀分布,生长状态良好。作为一种新兴的治疗方式,细胞治疗在众多疾病特别是癌症、遗传疾病、传染病的治疗中展现出良好的效果。而明美倒置荧光显微镜MF52-N为治疗提升效率与提高准确性。

倒置荧光显微镜MF52-N配备数显LED荧光模块,可实现三通道荧光激发,可选BGUYR等不同通道,激发光强直观可视并独立记忆,可用于细胞培养、生物制药、医疗检测等科研应用。

您若对倒置荧光显微镜感兴趣或存在疑问,欢迎与我们联系,我们将竭诚为您服务!

免责声明

本站无法鉴别所上传图片、字体或文字内容的版权,如无意中侵犯了哪个权利人的知识产权,请来信或来电告之,本站将立即予以删除,谢谢。 

来源:https://www.mshot.com/article/1716.html

2023-04-24 13:13:56 98 0
Adv. Opt. Mater. 西安工业大学:防伪加密黑科技再升级,新型CDs合成告捷 | 前沿用户报道

碳点(CDs)作为能发光的纳米碳材料,一直以来在防伪加密领域被普遍看好。它具有良好的光稳定性、水溶解性、生物相容性和低毒性,因而能参与分子材料构建而不产生毒害污染。理论上,如果将此类基于碳点构建而成的发光材料运用于防伪,那么它应该更具有难以仿制且不受环境条件制约的优势。碳点 (CDs) 研究也因此十分火爆。


但传统碳点 (CDs) 受制于分子聚集导致发光减弱(ACQ[1]效应,无法长时间聚集发光,而它的另外一种发光方式——室温磷光(RTP[2],又极易被水溶液中的氧气和其他分子影响,限制了其在水性生物系统中的应用。故而碳点(CDs)材料在防伪加密领域的发展一度止步不前。


如今新型CDs(E-CCDs)问世,打破了上述两种弊端,成为既能长时间聚集发光(即AIE[3]效应)又可水性应用的智能材料。其具备的刺激响应机制,能在特殊光照条件下长时间发光,显示出肉眼可识别的不同色彩,更可谓是加密、防伪界的“天选之作”。可以说,新型CDs(E-CCDs)能够真正发挥其应用载体及环境的高度适应性,且不易被复制仿冒,一举成为防伪及信息加密领域的“黑科技”,前景无限。


TIPS

[1] ACQaggregation-caused queching: 由于分子间作用或其他情况消耗了激发态能量,导致荧光淬灭的现象。也称聚集诱导荧光淬灭现象


[2] RTProom temperature phosphorimetry磷光是一种缓慢发光的光致发光现象,当激发光停止后,发光现象能持续存在。大多数室温磷光体系都含有贵金属,成本高并可能具有潜在毒性。具有长寿命的磷光化合物成目前仍然是研究难点。 


[3] AIEAggregation-induced emission大多数有机化合物的光发射效率在溶液中比在固体状态下高。但另外一些有机化合物的光发射遵循相反的模式,在固体中比在溶液中大。这种效应归因于分子在固体中的灵活性降低。也称聚集诱导发光现象。 


此类嵌入AIE效应和RTP特性的新型碳点(E-CCDs由来自西安工业大学材料与化工学院光电功能材料与器件课题组的陈卫星教授及金洗郎副教授成功研发。相关研究论文在国际光学领域著名学术期刊《Advanced Optical Materials》上发表。“Facile Preparation Strategy of Novel Carbon Dots with Aggregation-Induced Emission and Room-Temperature Phosphorescence Characteristics”。下面就让我们一窥科研弄潮儿如何运筹帷幄,研发出新型 CDs,促使防伪加密黑科技技术升级的过程吧。


魔法“灵光”关键点
独特化合物防止分子运动


分子聚集导致发光猝灭(ACQ)原理作为光物理学常识被写入教科书数十年。但近年来与之相反的聚集诱导发光(AIE)概念打破了传统思维,而这正成为研究团队应对ACQ现象的有力武器。相关研究表明,当碳点 (CDs) 中有机分子具有扭曲结构、运动受限时,AIE 效应即可出现!同时课题组发现,室温磷光(RTP)经过精巧的分子设计与合成,即可克服水性应用的阻碍,并大大提高磷光发射强度!


基于以上研究,首先陈教授课题组的丁镠博士及其团队制备出具有 AIE 效应的碳点分子结构,然后在其中加入一种有机化合物——三聚氰酸,这种独特的化合物可以提高碳点的刚性,阻止分子间运动,宛如魔法般抑 制了发光溃散的同时,提高了磷光发射强度。


这样一来,此类碳点(CDs)材料在室温条件下的发光能更易用肉眼观察到,其亮度也变得更强、时间更长。这意味着它对刺激有强响应机制,这更有利于未来在信息加密及防伪领域获得长足发展。


E-CCDs光谱测定
科学佐证AIE效应


为了验证新型碳点 E-CCDs 的聚集诱导发光(AIE)效应,科研小组将不同水容积比的溶液置于 365 nm紫外线照射,并对其发光状态进行对比(图1),结果发现:当溶液含水量<50%时,紫外线照射下(UV on)显示蓝色荧光,而含水量>50%时则显示红色荧光。同时,不同浓度的溶液发射光谱(图2)也在 450nm 与 600nm 显示了明显的波峰。这些现象表明:E-CCDs 由于分子内旋转的限制成功阻抗了淬灭,表现出聚集诱导发射(AIE),因而依然发光。碳点(CDs)材料自此终于破除了固态下的发光溃散“魔咒”,从而突破了其应用于防伪加密领域的形态限制。


1

在日光()365nm紫外线照射()下制备的不同体积水比(090%)E-CCDs溶液的照片。


2

不同水比时E-CCDs溶液的荧光发射光谱


E-CCDs的磷光性质
RTP特性一目了然


在 365 nm 紫外线照射下,E-CCDs 溶液的磷光随着水量的增加由不存在变为绿色,其强度也持续增加(图3)。荧光粉的磷光可以用肉眼观察到,关闭紫外线光源后仍可持续发光 9 s(图4)。这些结果表明AIERTP效应都得到了实现,且同时兼具荧光与磷光发射,其强度与发光寿命都能满足易于识别需求。



图3

制备的不同体积水比(从0到90%)的E-CCDs溶液在UV OFF下的照片。


图4

在UV OFF下的电子E-CCDs粉末照片。


为了进一步揭示磷光的机理,研究人员提出了如图5所示的方案。E-CCDs 聚合网络骨架由氢键相互作用形成,这一系列氢键提高了E-CCDs 的刚性,防止分子间运动,有效地增强了系统间交叉,从而提高了磷光发射


5

E-CCDs可能的结构示意图以及CDsCA和水分子之间的分子相互作用。


E-CCDs的应用
加密防伪两不误


所谓“科研至上,应用为王”,E-CCDs 的广阔前景令人兴奋不已。为了进一步验证其应用价值,丁博士团队将 E-CCDs 粉末用于潜伏指纹、贴膜和加密。如图6),结果表明,其在荧光及磷光下成像表现十分优秀,在细节处也可以清晰展现图案样态与纹路。作为智能材料,E-CCDs 运用于高级防伪及多重信息加密,会让产品设计有更广阔的发挥空间,能够适用于更精细、更独特的图样,为该领域产品的升阶发展提供了强有力的支持。


6

aE-CCDs墨水在日光和紫外线照射下的照片,以及E-CCDs粉末染色的潜在指纹照片(紫外线关闭)b) CDs-PVA胶片。c)喷洒水和乙醇前后在E-CCDs溶液上绘制的图案照片。



课题组介绍

西安工业大学电功能材料与器件课题

西安工业大学陈卫星教授及金洗郎副教授光电功能材料与器件课题组,主要研究方向为有机荧光、室温磷光材料的制备及其荧光成像,发光二极管、光学防伪等领域的应用研究,共价有机框架材料的设计、合成及其荧光性能调控等。


课题组合照


黑科技”组团报道不是梦
HORIBA仪器来助攻


除了敏锐的研发思路与坚持不懈的钻研精神,适宜且精妙的仪器也是科研路上必备的得力干将。HORIBA 十分荣幸能在荧光磷光测量表征方面为先进智能材料的研究应用献上一臂之力。有了先进仪器的助力,相信未来将会有更多“黑科技”组团报道。


该研究中使用的 HORIBA 的 QuantaMaster 8000 荧光光谱仪(现已升级为 Fluorolog-QMTM ),配置专 利 DeltaRAM XTM 单色仪,能获得超快激发波波长扫描,实现快速比率测定。其灵敏度高,特别适用于动态扫描、膜流动性测量及耦合荧光显微镜。它对荧光光谱及磷光光谱,荧光量子产率及荧光/磷光寿命也能进行全光谱范围的快速表征分析。它的模块化设计更可满足各种专属应用需求。


本次实验中使用的 QuantaMater 8000 荧光光谱仪

(升级型号:Fluorolog-QMTM 模块化稳瞬态荧光光谱仪)


如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。


2023-06-05 10:04:13 518 0
复旦张立武课题组:加速推进环境微纳塑料研究,开发低成本SERS基底 | 前沿用户报道

0研究背景及成果

表面增强拉曼光谱(SERS)技术是一种结合拉曼散射和纳米技术的超灵敏振动光谱技术,检测水平可低至单分子,可应用于微纳塑料的检测研究。复旦大学张立武课题组之前的研究工作中,首次报道利用 SERS 技术实现了环境纳米塑料的检测(EST,2020, 54(24): 15594)。但是该研究中采用的商业化 Klarite 基底成本昂贵,不适宜广泛大规模的应用。


因此复旦大学张立武教授课题组基于 V 型阳极氧化铝模板提出了一种新型适用于环境微纳塑料检测的低成本 SERS 基底,增强因子最 高可达20,并可快速准确地检测到1 μm 的单个微塑料颗粒。该基底具备热点均一、增强 效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。


相关研究以 V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics 为题发表在 Front.Environ. Sci. Eng.。



02 实验过程       

1) 制备SERS基底

在之前商业化 Klarite 基底研究经验的基础上,张老师课题组这次依然选用了具有相似倒锥形结构的阳极氧化铝(AnodizedAluminum Oxide, AAO)模板,通过磁控溅射和离子溅射两种沉积金纳米材料的方法分别制备得到了相应的 SERS 基底。



图1(a)空白的AAO模板;(b)离子溅射后形成的基底;(c)磁控溅射后形成的基底;(d,e)微塑料小球在基底上的分布。


2) 检测微塑料标准样品

在这个环节中,张教授团队使用 HORIBA LabRAM XploRA 高性能全自动拉曼光谱仪验证基底检测微塑料的性能。实际结果也表明他们制备的 SERS 基底可大大增强微塑料的拉曼信号,增强因子最 大可达20,可检测到的微塑料尺寸也缩小至1 μm。这些数据充分表明了这次制备的 SERS 基底在检测单个小尺寸微塑料颗粒方面具有明显优势。值得一提的是,与商业基底 Klarite 相比,这次使用的 SER 基底检测成本也大大降低。



图2(a)微塑料在硅基底上的拉曼光谱;(b)显微镜下,硅基底上不同尺寸的单个微塑料小球;(c)不同尺寸的单个微塑料在离子溅射形成基底上的拉曼光谱;(d)不同尺寸的单个微塑料在磁控溅射形成基底上的拉曼光谱;(e,f)显微镜下,磁控溅射和离子溅射形成基底上的不同尺寸的单个微塑料小球;(g)不同尺寸微塑料小球在不同溅射方法形成基底上的增强因子的箱线图。


3)检测真实环境样品

不止实验室环境,张教授对基底在实际环境中的应用能力也进一步进行了验证检测。他们收集了雨水样品,并对其进行消解、过滤等前处理,最 终将雨水样品滴加在基底上进行实验。张教授团队利用 HORIBA 光谱仪的普通拉曼成像功能、SWIFT 快速成像功能以及 ParticleFinder 颗粒分析功能,对基底上的样品进行分析,寻找疑似微塑料的颗粒物质并根据成像结果快速定位,最 终在雨水样品中检测到与标准聚苯乙烯光谱高度匹配的微米级颗粒物质。



图3(a)显微镜下在雨水样品中找到的微塑料颗粒;(b)该微塑料颗粒的拉曼光谱,出峰位置与标准聚苯乙烯光谱高度匹配。


仪器使用评价

本研究中,我们使用的是 HORIBA XploRA 高性能全自动拉曼光谱仪。


首先是利用 HORIBA 拉曼光谱仪检测微塑料颗粒,其亚微米级的共焦成像分辨率使我们能够清楚准确地寻找到目标颗粒物,同时全自动化的操作也大大节省了检测时间。


其次是 HORIBA 拉曼光谱仪的 SWIFT 快速成像功能,帮助我们在检测实际样品时,能够快速寻找定位疑似目标。


在检测雨水样品时,由于样品中颗粒物众多,且属性未知,造成使用一般方法寻找颗粒物并进行检测费时费力。而 HORIBA 拉曼光谱仪提供的普通拉曼成像功能和 SWIFT 快速成像功能提供了很大的帮助,光谱仪的自动化检测操作提高了分析效率。



实验室实拍

HORIBA XploRA 高性能全自动拉曼光谱仪


课题组负责人简介

张立武,复旦大学环境系教授,博士生导师。


主要从事大气污染化学研究,在EES,Angew,EST等期刊发表论文100余篇,他引总计8000余次。担任英国皇 家化学会期刊《EnvironSci:Adv》副主编。入选国 家级青年人才计划,上海市“东方学者”特聘计划,德国洪堡学者等。


近年来在环境颗粒物污染物检测及成像方面开展了持续研究,包括实现了单颗粒气溶胶三维化学成分及混合状态的受激拉曼成像(SmallMethods , 2019, 1900600),单颗粒气溶胶的表面增强拉曼检测(EST,2017, 51, 6260;AnalyticalChemistry, 2019, 91, 21: 13647),及纳米塑料的表面增强拉曼检测(EST,2020, 54: 15594)等。


联系作者:张立武,zhanglw@fudan.edu.cn



2022-12-04 11:19:01 210 0
哪卖高分子化学与物理实验,大连理工大学高分子材料系编
 
2012-03-02 07:31:52 471 1
强光手电能用超级电容电池吗效果咋样
 
2018-11-16 02:02:32 403 0

5月突出贡献榜

推荐主页

最新话题