仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

问答社区

核磁共振原理_K空间简介

苏州纽迈分析仪器 2019-05-29 13:23:04 1044  浏览
  • 背景简介
          磁共振的每一个信号都含有全层的信息,因此需要对磁共振信号进行空间定位编码,即频率编码和相位编码。接收线圈采集到的MR信号实际是带有空间编码信息的无线电波,属于模拟信号而非数字信息,需要经过模数转换(ADC)变成数字信息,后者被填充到K空间,称为数字点阵。K空间与磁共振信号的空间定位息息相关。

           K空间也叫傅里叶空间,是带有空间定位编码信息的MR信号原始数字数据的填充空间,每一幅MR图像都有其相应的K空间数据点阵。对K空间的数据进行傅里叶转换,就能对原始数字数据中的空间定位编码信息进行解码,分解出不同频率、相位和幅度的MR信号,不同的频率和相位代表不同的空间位置,而幅度则代表MR信号强度。把不同频率、相位及信号强度的MR数字信号分配到相应的像素中,我们就得到了MR图像数据,即重建出了MR图像。傅里叶变换就是把K空间的原始数据点阵转变成磁共振图像点阵的过程。


          下图给出了从层面矩阵到数据空间又到真正的K空间过程。水平刻度为采样间隔ΔTs,竖直刻度为TR,即数据空间是位于时间域内,经过数学运算将数据空间的坐标转换为空间频率域内,就得到真正的K空间,K空间经傅立叶变换就是层面的图像


    图1.从层面到层面对应的k空间

    相位编码梯度场—–射频脉冲+频率编码梯度场—–线圈采集得到MR模拟信号—–模数转换的到数字信号——-填入K空间形成数字点阵—–傅里叶变换分解出不同频率、相位、强度的信号——分配到各个像素中形成图像点阵得到MR图像。

    图2.K空间采集过程

    (来源:苏州纽迈分析仪器股份有限公司)

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

热门问答

核磁共振原理_K空间简介

背景简介
      磁共振的每一个信号都含有全层的信息,因此需要对磁共振信号进行空间定位编码,即频率编码和相位编码。接收线圈采集到的MR信号实际是带有空间编码信息的无线电波,属于模拟信号而非数字信息,需要经过模数转换(ADC)变成数字信息,后者被填充到K空间,称为数字点阵。K空间与磁共振信号的空间定位息息相关。

       K空间也叫傅里叶空间,是带有空间定位编码信息的MR信号原始数字数据的填充空间,每一幅MR图像都有其相应的K空间数据点阵。对K空间的数据进行傅里叶转换,就能对原始数字数据中的空间定位编码信息进行解码,分解出不同频率、相位和幅度的MR信号,不同的频率和相位代表不同的空间位置,而幅度则代表MR信号强度。把不同频率、相位及信号强度的MR数字信号分配到相应的像素中,我们就得到了MR图像数据,即重建出了MR图像。傅里叶变换就是把K空间的原始数据点阵转变成磁共振图像点阵的过程。


      下图给出了从层面矩阵到数据空间又到真正的K空间过程。水平刻度为采样间隔ΔTs,竖直刻度为TR,即数据空间是位于时间域内,经过数学运算将数据空间的坐标转换为空间频率域内,就得到真正的K空间,K空间经傅立叶变换就是层面的图像


图1.从层面到层面对应的k空间

相位编码梯度场—–射频脉冲+频率编码梯度场—–线圈采集得到MR模拟信号—–模数转换的到数字信号——-填入K空间形成数字点阵—–傅里叶变换分解出不同频率、相位、强度的信号——分配到各个像素中形成图像点阵得到MR图像。

图2.K空间采集过程

(来源:苏州纽迈分析仪器股份有限公司)

2019-05-29 13:23:04 1044 0
低频核磁共振原理
低频核磁共振原理

物质由原子构成,质子是原子核内的主要微粒,核磁信号就是来源于质子。以氢质子为例,由于其带有正电荷,且自身高速旋转,可以看作一个环形电流,由电磁理论可知,电生磁,质子产生一个磁矩,可以将其看作一个小磁针。样品内部无数的小磁针按自身的方向杂乱排列,相互抵消,总磁矩为零。

当样品置于一个静磁场中时,原有的平衡被打破了。根据量子力学原理,核磁矩在外磁场中的空间取向是量子化的,只能取确定的方向,氢核可取两个方向,这两个方向的位能不同,一高一低。氢核从原有的平衡状态到裂分为两个取向,成为塞曼能级分裂。形象的说,好比小磁针放到静磁场后,分为了两个阵营:顺从派和抵抗派。顺从派能量较小,能级较低,和静磁场方向相同,抵抗派能量较大,能级较高,和静磁场方向相反,且两派的力量不均等,顺从派稍多于抵抗派,每10万个核,两派数量差一个。就是这多出的一个磁矩,积少成多,形成了一个与主磁场同方向的磁化矢量,是核磁共振信号的来源。

磁化矢量沿主磁场方向旋转,如果施加一个适宜的射频场,该磁化矢量就会发生倾斜,从而形成核磁共振信号。适宜的射频场是指频率与磁化矢量拉莫尔进动频率一致。如前面讲的比喻,磁化矢量好比一个垂直于地面的沙袋,射频场发射的脉冲好比拳头,只有拳头力量匹配沙袋的重量,沙袋才会倾斜,从而在地面形成一个投影。这个投影就是仪器检测到的核磁信号。沙袋倾斜后会逐渐回复到平衡状态,投影会越来越小,直至消失,检测到的核磁信号也是一个衰减的信号。

2022-12-02 23:27:27 172 0
氮吹仪原理--简介

氮吹仪也叫氮气吹干仪、自动快速浓缩仪等,该仪器通过将氮气快速、连续、可控的吹向加热样品的表面,使待处理样品中的水分迅速蒸发、分离,从而实现羊皮的无氧浓缩,同时,该仪器能够保持样品的纯净,从而达到快速分离纯化的效果。氮吹仪不仅操作简单,而且可以同时处理多个样品,这就大大缩短了检测时间。从而,它得到了广泛的应用。


2.氮吹仪原理--结构组成

氮吹仪主要包括气体分配室、气针、高度调节支架、氮气接口、高度微调部件、支柱、固定组件、机箱、衬套、加热块、样品试管或试瓶等部件。试管通过带弹簧的试管夹和支撑盘来固定位置。根据试管大小和溶剂多少,各导气管可独立升降至合适的高度。


3.氮吹仪原理

氮吹仪利用氮气是一种不活泼的气体,能起到隔绝氧气的作用,如果加强它周围的空气流动,提高他的温度,就可以达到防止氧化的目的。同时采用对底部进行加温,而顶部用氮气或空气进行吹扫,通过氮气的快速流动可以打破液体上空的气液平衡,使液体挥发浓缩速度加快、迅速挥发,从而达到让样品快速浓缩的目的。


4.氮吹仪原理--应用

氮吹仪通过加热样液进行吹扫,使得待处理样品迅速浓缩,从而实现快速分离纯化,它主要应用于大批量样品的浓缩制备,诸如药wu筛选、激su分析、液相、气相以及质谱分析中的样品前处理制备。具体应用领域如下:

生物分析:如血清、血浆、血液、尿液等;

化学品残留、农残分析:如蔬菜、水果、谷物以及植物组织等;

环境分析:如饮用水、地下水和污染水样等;

商品检测:如检验克罗夫特等;

食品饮料:如牛奶、酒、啤酒等;

制药药检:如中药制药、制药质量控制等;


2022-01-14 13:37:29 449 0
核磁共振的成像原理
 
2017-05-30 12:35:02 591 1
激光相干性原理简介
 
2016-08-28 07:13:26 832 2
k型热电偶是什么原理
 
2017-09-30 03:23:00 484 1
核磁共振的成像原理是什么?
 
2015-03-06 12:44:24 335 1
核磁共振法测比表面积原理

核磁共振法测比表面积原理:

低场核磁共振方法可以对悬浮液状态下的颗粒进行比表面测量和分析。其工作原理是当样品颗粒在悬浮液状态下时,吸附了一层厚度为L的水分子层,此即为吸附水,则水分子层外为自由水,吸附水与自由水中的H质子活性存在很大的差异,使得吸附水的弛豫时间远小于自由水的弛豫时间,这个差别可以反映与颗粒表面吸附溶液的量,进而推导出颗粒的湿式比表面积。

核磁共振法具有多项独特的优势:测试简单、快速,整个测试过程在3min内;样品无需预处理,无需引入外部试剂;测试结果可靠且稳定性高、重复性好;适用性广,可测量任何大小、形状的颗粒,精度高。


核磁共振法适用材料范围:
1、颗粒:SiO2、SiC、ZnO、Al2O3、BaCO3、石墨烯、活性炭、炭黑等一百多种材料;
2、悬浮体系溶剂类型:水、乙醇、丁酮、甲苯等各类含H质子溶剂。

应用领域:
1)*制陶术:湿式制程、加工工艺改善,分散性的质控和研发;
2)纳米科技:纳米粒子表面的化学状态,如: 吸附和脱附作用,比表面积的变化等;
3)电子材料:浓稠状浆料和研磨液 (CMP) 的开发及品管;
4)墨水:碳黑、颜料分散,*适研磨条件,表面亲和性及化学和物理状态;
5)能源:电池,太阳能板等的碳黑,纳米碳管和浆料的分散,粒子表面的化学和物理状态;
6)制药:API湿润性、亲和性及吸水性的差异;
7)其他: 全部的浓稠分散悬浊液体,纳米纤维,纳米碳等。

案例1 药物活性成分粒径控制

药物活性成分:制药过程中,通过湿法研磨控制药物活性成分的粒径大小;提高药物活性成分用以研究生物相容性、生物活性和分解性能。

结论:随着研磨时间的增长,溶液的T2变小,比表面积变大,粒径变小。研磨1h之后,粒径基本稳定。

案例2 添加分散剂颗粒比表面积的影响

加入分散剂后,比表面积显著增加,有利地证明了此分散剂的性能。


2021-08-19 17:27:26 550 0
核磁共振固体脂肪含量分析仪原理

核磁共振固体脂肪含量分析仪原理

天然的油脂在常温下一般都为固体油脂和液体油脂的混合物。固体脂肪含量(SFC)是可可油、人造黄油、黄油等常规测量指标,是脂肪 在不同温度下的熔融以及硬度性能指标。熔融和硬度性能对口感、香味以及涂抹性能有很大影响。 核磁共振固体脂肪含量分析仪可以帮助您快速准确的测量油脂的固体脂肪所占比例。通过定标和测量,实现信号采集、测 试结果数据处理,得到样品的固体脂肪含量。


核磁共振固体脂肪含量分析仪


核磁共振固体脂肪含量分析仪原理

固体脂肪和液体脂肪中的H由于存在状态不同,核磁共振FID信号衰减表现出截然不同的特性。固体脂肪信号衰减很快,一般在70微秒时已经衰减为0。液体脂肪信号衰减较慢,一般认为在70微秒处基本无损失。


由于来自固体的NMR信号衰减比来自液体的NMR信号衰减快得多。因此,可以在FID(图1)上的两个点进行测量,分别在“t1=11us”点进行测量,该点对应固体和液体信号的总和A1。在另一个点“t2=70us”进行测量,该点固体信号已经衰减到0,测试到的信号A2仅为液体信号。通过计算,即可得到样品在对应温度下的固体脂肪含量。对多个温度进行测试,即可得到温度与固体脂肪的变化曲线。


核磁共振固体脂肪含量分析仪原理


核磁共振固体脂肪含量分析仪测试流程:

1、根据测试标准进行调温处理;

2、规定温度下对样品进行恒温;

3、将恒温后的样品放入仪器,测得固体脂肪含量;



2022-04-20 23:04:44 331 0
薄膜蒸发器简介及原理

薄膜蒸发器是通过旋转刮膜器强制成膜,并高速流动,热传递效率高,停留时间短,可在真空条件下进行降膜蒸发的一种新型蒸发器。薄膜蒸发器是一种蒸发器的类型,特点是物料液体沿加热管壁呈膜状流动而进行传热和蒸发,优点是传热效率高,蒸发速度快,物料停留时间短,因此特别适合热敏性物质的蒸发。

薄膜蒸发器物料从大直径端连续不断地进入卧式蒸发器,被刮膜片加速和分配并立即在加热面上形成一个薄的流动膜。 圆锥型薄膜蒸发器,依赖于转子施于物料一个离心力,这离心力有两个有效力,一个垂直于加热面,另一个朝大直径端体的方向(注意:相同的结果同样出现在 垂直圆锥型薄膜蒸发器里)依靠这些力产生物料加速,而且进入的物料保证加热面充分潮湿,不依赖于蒸发比或进料速度。因此,局部物料过热和热降解被减少或完 全消除。

在此过程中,轻组份(低沸物)顺流(和液膜同向)穿过卧式薄膜蒸发器进入汽液分离器,在此处经汽液分离所产生的液滴和泡沫被击碎进入液相(高沸物), 被分离后的汽体进入外置冷凝器或下道工序;重组份(高沸物)沿着加热壁面爬升到小端出口排出


2022-01-19 15:28:08 639 0
医学中核磁共振检查的原理
 
2013-07-02 12:02:23 326 1
医学上的核磁共振的原理是什么
是不是就是原子核与磁之间的相互作用所表现出来的现象
2017-05-03 22:54:22 487 1
半导体光电子器件的原理简介
 
2018-11-12 20:08:42 237 0
光时域反射仪的原理简介
 
2018-12-12 22:07:16 285 0
电缆测试仪的组成、测试原理及特点简介
 
2018-11-19 05:30:13 235 0
氮气发生器变压吸附制氮原理的简介

变压吸附(Pressure Swing Adsorption,简称PSA)气体分离技术是非低温气体分离技术的重要分支,是人们长期来努力寻找比深冷法更简单的空分方法的结果。七十年代西德埃森矿业公司成功开发了碳分子筛,为PSA空分制氮工业化铺平了道路。三十年来该技术发展很快,技术日趋成熟,在中小型制氮领域已成为深冷空分的强有力的竞争对手。
变压吸附制氮是以空气为原料,用碳分子筛作吸附剂,利用碳分子筛对空气中的氧和氮选择吸附的特性,运用变压吸附原理(加压吸附,减压解吸并使分子筛再生)而在常温使氧和氮分离制取氮气。
变压吸附制氮与深冷空分制氮相比,具有显著的特点:吸附分离是在常温下进行,工艺简单,设备紧凑,占地面积小,开停方便,启动迅速,产气快(一般在30min左右),能耗小,运行成本低,自动化程度高,操作维护方便,撬装方便,无须专门基础,产品氮纯度可在范围内调节,产氮量≤2000Nm/h。但到目前为止,除美国空气用品公司用PSA制氮技术,无须后级纯化能工业化生产纯度≥99.999%的高纯氮外(进口价格很高),国内外同行一般用PSA制氮技术只能制取氮气纯度为99.9%的普氮(即O2≤0.1%),个别企业可制取99.99%的纯氮(O2≤0.01%),纯度更高从PSA制氮技术上是可能的,但制作成本太高,用户也很难接受,所以用非低温制氮技术制取高纯氮还加后级纯化装置。

2022-02-08 14:19:28 569 0
伽蓝空间是什么样的空间???
隈岩吾在他的<十宅论>中的<咖啡吧派>一章,提及了“伽蓝空间”(原文:“咖啡吧和舞台的diyi个共通点就是,两者同属于伽蓝空间”,“可以突出演员演技的空间,应该像伽蓝空间那样不会有... 隈岩吾在他的<十宅论>中的<咖啡吧派>一章,提及了“伽蓝空间”(原文:“咖啡吧和舞台的diyi个共通点就是,两者同属于伽蓝空间”,“可以突出演员演技的空间,应该像伽蓝空间那样不会有多余的东西,只具中性色彩.”)百度了下,没找到合适解释。 展开
2018-11-24 19:09:02 401 0
核磁共振自由感应衰减信号(FID信号) 核磁原理展示

自由感应衰减(free induction decay, FID)是核磁共振现象的表现形式。下面将对核磁共振中的自由衰减信号(FID)进行简要的介绍。

  核磁共振设备中会使用若干种不同种类的线圈。主要包括:梯度线圈和射频线圈两种,下面简单介绍下射频线圈的功能。

  射频线圈具有发射和接收两个基本功能,包括发射线圈本接收线圈。发射线圈的功能是向检测样品发射射频脉冲,使质子的纵向磁化强度矢量发生翻转。接收线圈的功能是接收样品的核磁共振信号。

自由感性衰减信号(FID)

  这里以π/2脉冲为例,在x轴方向通过发射线圈发射π/2脉冲,在旋转坐标系内,脉冲结束时,纵向磁化强度矢量M0翻转到xOy平面内并位于y‘轴方向。这样在π/2脉冲以后,可以得到一个横向磁化强度矢量。Mxy ,在xOy平面的运动是螺旋形衰减,见图1。若把发射线圈作为接受线圈,依据法拉第电磁感应定律可知,当旋转的 Mxy穿过xOy平面内位于x轴上的接收线圈,引起拖过线圈磁通量的变化时,就可在接收线圈内产生一感应电动势(或感应电流),这个感应电动势或感应电流称为核磁共振信号。

图1.横向磁化螺旋式衰减

由于Mxy是一个按正弦规律振荡、按指数规律衰减,所以接受的信号也是按正弦规律振荡,按指数规律衰减。信号变化如图2(a)。因此,这种按正弦规律振荡、按指数规律衰减的核磁共振信号习惯被称为自由感应衰减信号(free induction decay)

图2. FID信号波形

  需要特别注意的是:由于Mxy以角频率ω0绕外磁场转动,接收到信号的角频率也是ω0,即信号的频率与射频脉冲相等,也就是产生核磁共振的频率。当一个较小的纵向磁化强度矢量M0在π/2脉冲作用下翻转到xOy平面内,其产生的FID信号见图2(b),这说明FID信号的大小与π/2脉冲停止后,Mxy初始大小或π/2脉冲作用前纵向磁化强度大小有关,Mxy越大,同一时刻产生的FID信号越强。

  FID信号是强度随时间的变化波形,经傅立叶变换后偶可得到核磁共振信号强度随频率ν变化的波形,即核磁共振谱,如图3,图中ν0为共振频率。

核磁共振实验教学案例展示:硬脉冲FID 序列测量拉莫尔频率

图4.偏振状态下的FID信号

图5.接近共振状态下的FID信号

图6.共振状态下的FID信号


(来源:苏州纽迈分析仪器股份有限公司)



2019-06-03 15:44:53 2267 0

5月突出贡献榜

推荐主页

最新话题