【内含pdf】气体吸附技术在陶瓷行业表征中的应用
摘要:气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对陶瓷材料的比表面积、孔容及孔径分布、真密度等参数进行精 准的分析。进而可以考察材料的吸附、催化、导热、吸音和抗震等多种性能,助力先进陶瓷材料的快速高质量发展。
陶瓷是以粘土为主要原料,并与其他天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品,是陶器和瓷器的总称。随着现代高新技术的发展,先进陶瓷已逐步成为新材料的重要组成部分,由于先进陶瓷特定的精细结构和其高强、高硬、耐磨、耐腐蚀、耐高温、磁性、半导体以及压电、声光、生物相容等一系列优良性能,被广泛应用于国防、化工、冶金、电子、机械、航天、生物医学等国民经济的各个领域。
01先进陶瓷材料的分类
先进陶瓷,按化学成分可分为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷等。按性能和用途可分为功能陶瓷和结构陶瓷两大类。功能陶瓷主要基于材料的特殊功能,具有电气性能、磁性、生物特性、热敏性和光学特性等特点;结构陶瓷主要基于材料的力学和结构用途,具有高强度、高硬度、耐高温、耐腐蚀、抗氧化等特点。
02气体吸附技术助力陶瓷材料的性能研究
研究发现,陶瓷材料的加工性能和功能属性与其本身的物性参数有着密不可分的关系。例如,陶瓷材料的比表面积和孔径分布与陶胚的加工和烧结固化、成品强度、质感和密度等有着紧密的联系;一般来说,陶瓷原材料的比表面积越大,相应的烧结温度就会较低,且烧结效率会更高。此外,对于多孔陶瓷材料来说,具有体积密度低,孔分布均匀且尺寸可控,孔隙率高、高比表面积等特性,使其具备广泛的应用场景。因此,非常有必要对陶瓷材料的比表面积、孔径分布和密度等物性参数进行表征。
03比表面积和孔径分布在陶瓷材料表征中的应用
(1)碳化硅陶瓷材料表征案例
碳化硅(SiC)陶瓷材料具有良好的耐磨性、导热性、抗氧化性及优异的高温力学性能,被广泛应用于能源、环保、化工机械、半导体、国防军 工等领域[1]。碳化硅陶瓷材料的应用经历了从低表面积发展成为多孔、高比表面积的方向。
这其中多孔碳化硅材料是一种兼具结构性和功能性的陶瓷材料,其不仅具有陶瓷基体的优良性能,而且还具有较大的气孔率、气孔表面积以及可调节的气孔形状、气孔孔径尺寸及其分布、气孔在三维空间的分布及其连通性等。其丰富的孔径结构使其可在严苛的环境条件下作为气体、 液体(如熔融金属)、 固体颗粒的过滤材料以及催化剂载体等[2]。
以下是使用国仪量子自研的V-Sorb X800系列比表面及孔径分析仪对碳化硅陶瓷材料的表征案例。测试前,样品均在200℃真空条件下加热1小时进行脱气处理。在进行BET方程计算时,对于介孔、大孔以及无孔材料,P/P0选点范围为0.05-0.3;对于微孔材料或者含有微孔结构的材料,其P/P0选点范围一般会前置(大多数在0.01~0.1范围)。从图1可以看出,通过不同方法合成的SiC多孔陶瓷材料,其BET方程的P/P0选点在0.01~0.1,分别为60.24 m2/g,78.07 m2/g和106.74 m2/g,差异较大,研究者可以通过比表面积的测试结果来进行基础性能的预估;此外,结合性能测试,其比表面积的大小也能为其分析作用机理做一个参考。
图1 SiC-01(左)、SiC-02(中)和SiC-03(右)的比表面积测试结果
除此之外,对其他碳化物陶瓷材料也做了相应的表征,以下是对碳化钨(WC)陶瓷材料的表征。由图2可知,BET方程的P/P0选点在0.05~0.3,其比表面积较小,但也能通过比表面积测试,将其差异精 准的表征出来;此外,能对其生产工艺的稳定性也做一个参考。
图2 WC-1(左)、WC-2(右)的比表面积测试结果
(2)氧化铝陶瓷材料表征案例...
(3)二氧化钛陶瓷材料表征案例...
(4)真密度表征中的实际应用案例...
更多应用实例请扫描下方二维码获取完整报告pdf
04国仪精测V-Sorb X800系列
国仪精测V-Sorb X800系列比表面及孔径分析仪采用静态容量法测试原理,具备完全的自动化操作,人性化的操作界面,简单易学。产品技术通过机械工业联合会科技成果鉴定,被欧美高校、科研实验室选购使用,获得一致好评,树立了优良的国产品牌形象。
全自动比表面及孔径分析仪V-Sorb X800系列
参考文献:
[1] 李辰冉, 谢志鹏, 康国兴, 等. 国内外碳化硅陶瓷材料研究与应用进展[J]. 硅酸盐通报, 2020, 39(5): 1353-1370.
[2] 蒋兵, 王勇军, 李正民. 多孔碳化硅陶瓷制备工艺研究进展[J]. 中国陶瓷, 2012 (11): 1-3.
全部评论(0条)
推荐阅读
-
- 【内含PDF】扫描电镜在锂离子电池中的应用
- 锂离子电池(LIB)是21世纪以来最为热门的储能器件之一,具有能量密度高、单体输出电压高、循环性能优越、可快速充放电和使用寿命长等优点,被广泛应用于消费电子产品、电动汽车和新能源电站的储能电源系统等。
-
- PDF免费下载!气体吸附技术在钠离子电池硬碳负极表征中的应用
- 硬碳是一种即使在 2500 ℃以上也难以石墨化的碳,其形态可以是球形的、线状的或多孔的,在材料合成过程中其通常能够保持前驱体的形貌。
-
-
- Webinar | 6月28日 气体吸附在催化剂表征中的应用
- 时间:6月28日14:30-15:00
-
- 吞云吐雾的背后!气体吸附技术在烟草行业中的应用
- 气体吸附技术是材料表面物性表征的重要方法之一,使用国仪量子自主研发的V-sorb X800系列静态容量法比表面及孔径分析仪,基于物理吸附分析能够得到材料的比表面积、孔容及孔径分布等参数
-
- 如何高效制氢?气体吸附技术在制氢和氢燃料电池中的表征应用
- 氢燃料电池是以氢气为燃料,通过电化学反应将燃料中的化学能直接转变为电能的发电装置,具有能量转换效率高、零排放、无噪声等优点。
-
- 【内含PDF】如何研发性能优异的储氢材料?高压储氢吸附仪在储氢材料中的应用
- 氢能产业链主要环节包括氢气的制备、储存、运输和利用,处于产业链中段的氢气存储连接了氢气的生产和应用,是实现氢气大规模应用的关键技术和前提条件。
-
- 扫描电镜在陶瓷基复合材料中的应用
- CMC 材料可以从根本上克服陶瓷脆性,是陶瓷基复合材料发展的主流方向
-
- (附解决方案pdf)扫描电镜在锂电池失效分析中的应用
- 锂离子电池因能量密度高、循环寿命长、倍率性能高等优势成为了目前应用最广泛的电化学储能器件之一。伴随着新能源汽车等领域的兴起,国内对锂离子电池失效分析的需求也越来越大。
-
- 直播预告|《热分析技术在高分子材料表征中的应用》讲座火热报名中!
- 2022年TA仪器将于6月17日在中国科学院长春应用化学研究所举办《热分析技术在高分子材料表征中的应用》在线讲座,干货满满,抓紧报名吧!
-
- 激光粒度仪在导电剂表征中的应用
- 随着节能减炭的兴起和能源结构的调整,锂离子电池作为新能源汽车和储能设施的核心部件之一受到了越来越多的关注。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论