仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

资讯中心

当前位置:仪器网>资讯中心> 商机> 正文

PDF免费下载!气体吸附技术在钠离子电池硬碳负极表征中的应用

来源:国仪量子技术(合肥)股份有限公司 更新时间:2023-08-01 19:28:56 阅读量:1235
导读:硬碳是一种即使在 2500 ℃以上也难以石墨化的碳,其形态可以是球形的、线状的或多孔的,在材料合成过程中其通常能够保持前驱体的形貌。

摘要:钠离子电池因具有成本低、安全性高等优势,被认为是最适合规模储能的新型电池,并有望缓解因锂资源短缺以及分布不均所引发的储能发展受限等问题。在众多负极材料中硬碳因储量丰富、成本低、导电性良好、储钠容量高、环境友好和低氧化还原电位等优点,被认为是最可能率先实现工业化的钠离子电池负极材料。但由于硬碳结构复杂且具有多孔隙、较大的比表面积和缺陷,仍面临着首次库仑效率低、倍率性能差等问题。因此,采用气体吸附技术精 准表征硬碳材料的比表面积、孔隙体积和孔径分布等物性参数对其储钠机理的研究和性能优化方面具有至关重要的意义。


640 (77).jpg

电池示意图。图片来源:摄图网


01硬碳材料

硬碳是一种即使在 2500 ℃以上也难以石墨化的碳,其形态可以是球形的、线状的或多孔的,在材料合成过程中其通常能够保持前驱体的形貌。根据前驱体来源不同可以分为树脂基(酚醛树脂、环氧树脂、聚糠醇等)、生物质基(纤维素、木质素、淀粉等)和沥青基(煤焦油沥青、石油沥青、天然沥青等)硬碳[1]。其微观结构是由弯曲的类石墨片堆叠的短程有序微区,各微区随机无序堆叠留下较多纳米孔洞,从而为钠离子在硬碳中的嵌入提供更多的空间。与石墨(层间距为0.335 nm)相比,硬碳扭曲的碳层结构增加了石墨化碳层之间的排斥力,从而使其具有更大的层间距(~0.38 nm)。这种大的层间距和纳米孔也有利于钠离子的扩散和循环过程中结构的稳定。此外,硬碳拥有和石墨类似的锂电位和更高的比容量,且硬炭是由类石墨的微晶结构和开口的角状微晶组成,这种独特的微晶结构不仅可以提供更多的储锂位点,而且有利于锂离子在石墨层间脱嵌,打开在锂离子电池上应用的广度。因此,硬碳作为新一代储能电池负极材料,发展前景十分广阔。


02硬碳储钠机理

储钠机理的探索对于深入了解硬碳结构对其电化学性能的影响以及指导硬碳材料的前期设计合成是至关重要的。根据硬碳材料微结构的不同,研究者们近年来也提出了符合自身实验现象的不同的钠离子存储机制。目前,对于硬碳储钠机制主要有4种观点,如图1所示,Jeff Dahn教授等提出的“嵌入-吸附(填充)”机制、曹余良教授等提出的“吸附-嵌入”机制,纪秀磊教授等提出的“三段(吸附-嵌入-填充)”机制以及Tarascon教授等提出的“吸附-填充”机制[2]。综合来看,硬碳材料中的储钠行为主要包括:(1)吸附:表面、缺陷位点和官能团的吸附;(2)孔填充:微孔填充;(3)嵌入:石墨化碳层的嵌入。

大量研究表明,硬碳材料本身的表面微观结构对其储钠机理有较大的影响。一般来说,具有大的比表面积和大量缺陷的硬碳材料,导致在循环过程中电解液分解形成电解质界面膜(SEI膜)会消耗大量钠离子;此外,大的表面积和孔隙导致在首次充放电过程中会发生大量的不可逆反应,最 终造成低的首次库仑效率。对于孔径结构来说,研究表明开放的大孔有助于循环过程中稳定碳结构, 开放的微孔影响首次库伦效率,而封闭的纳米孔有利于平台容量的增加[3]。因此,减小硬碳负极材料的比表面积、减少缺陷、调节微孔结构及闭合部分孔隙是提高首次库仑效率的关键所在。

640 (78).jpg

图1 四种硬碳储钠反应模型示意图[2]


03硬碳前驱体材料调控中的表征应用

自从Stevens 等将葡萄糖衍生的硬碳用于容量为300 mA·h/g 的高容量钠离子电池负极以来[4],大量的研究集中在利用合适的碳源前驱体、调节微观结构和组成来制备性能优异的硬碳材料。一般在超过1000 ℃的温度下将硬碳前驱体进行烧结而成硬碳。从宏观结构的角度来看,硬碳能够保留其前驱体的结构形态,因此其前驱体的纳米结构和合成条件对制备硬碳的微观结构和电化学性能具有重要影响。如中科院物理所Li等人通过废弃软木塞在高温下碳化得到的硬碳材料保留了其天然的多孔结构,而得益于这样独特的分层多孔结构,其在钠离子电池中展现了优异的电化学性能[5]。此外,利用各种生物质例如果壳、木材、秸秆等也能够获得各种独特微观孔隙结构的硬碳材料。除此之外,最常见的为酚醛树脂衍生的硬碳材料,由于酚醛树脂的合成可控,因此便于研究硬碳材料中不同组分含量以及特殊孔隙结构对硬碳材料储钠性能的影响。


如图2所示,采用国仪量子自研的V-Sorb X800系列比表面及孔径测试仪对不同前驱体材料的表征案例测试前,样品均在300℃真空条件下加热12小时进行脱气处理。在进行BET方程计算时,对于介孔、大孔以及无孔材料,P/P0选点范围一般为0.05-0.3;对于微孔材料或者含有微孔结构的材料,其P/P0选点范围一般会前置(多数在0.1以下),通过氮吸附测试可知,两种前驱体的BET比表面积分别为459.69 m2/g和632.83 m2/g,具有较大的比表面积,直接作为硬碳负极使用会导致电解液过度消耗,形成过多的电解质界面膜,且反应过程中会有较多的副反应发生,导致首次库伦效率较低,循环稳定性差。因此,一般会通过调控调控碳化过程, 包括碳化温度、变温速率、碳化方式等。研究发现,随着碳化温度升高, 变温速率减慢, 可以给碳层重排提供足够的能量和时间, 有利于增加硬碳结构的有序性, 材料中存在的孔隙也会逐渐塌陷和闭合,导致较低的表面积,使充放电循环中材料表面SEI膜减少, 这有利于提升首周库伦效率和循环稳定性[6]。如图3所示,对前驱体材料在较高温度下热解得到的硬碳材料,随着碳化温度的升高,硬碳材料的石墨化程度有所增强,其比表面积分别为2.77 m2/g和7.57 m2/g,低比表面积可以诱导有限的固体电解质界面相(SEI膜)形成,从而提高首次库仑效率。

640 (25).png

640 (26).png

图2 不同生物质基硬碳前驱体材料比表面积测试结果


640 (27).png

640 (28).png

图3 不同前驱体材料高温碳化后比表面积测试结果


04硬碳材料孔结构调控中的表征应用

大量的研究表明,不同的孔结构(超微孔、介孔和闭孔等)对于硬碳负极的性能提升是一项非常重要的影响因素,都有益于电池不同方面的提升。研究表明,硬碳材料中的介孔和大孔结构能有效的提升钠钠离子电池的倍率性能,主要得益于多孔结构有效增加了扩散通道, 缩短了扩散距离, 增加了电解液与电极材料的接触, 提高电解液浸润性[3]。如图4所示,采用国仪量子自研的V-Sorb X800系列比表面及孔径测试仪对硬碳材料孔径的表征案例。通过对硬碳材料的BJH-吸附-孔径分布图分析可发现,硬碳1#材料,其在9.46 nm处有一个集中的介孔孔径分布;硬碳2#材料在100 nm-200 nm处有一些大孔孔径分布。这些孔径的分布对于硬碳性能的提升发挥着至关重要的作用。

640 (29).png

640 (30).png

图4 硬碳1#(左)和硬碳2#(右)材料BJH-吸附-孔径分布图


研究发现,超微孔(小于0.7 nm)被认为是获得高倍率容量和高首次库伦效率(ICE)的关键,超微孔在材料中可以起到离子筛的作用,减少钠离子的扩散,但允许未溶剂化钠离子进入孔内,从而在不牺牲扩散动力学的情况下,减少电解液与内孔之间的界面接触,提高材料的ICE[1]。因此,在碳材料中引入超微孔可以有效地改善钠离子电池的负极性能。由于超微孔碳的合成和均匀性调节的难度较大,精 准对其硬碳超微孔进行表征,对其储钠机理的探究显得尤为重要。如图5所示,采用国仪量子自研的UltraSorb X800系列高性能微孔分析仪对不同硬碳材材料的超微孔阶段的表征案例通过对硬碳材料的HK-吸附-孔径分布图分析可发现,其分别在0.696 nm和0.621 nm处有一个集中的微孔孔径分布,这些超微孔的存在,一方面可以作为离子筛左右,提升材料的ICE,此外,有研究表面,这些超微孔能提供额外的钠离子储存位,能显著提高了钠电材料的容量[7]。

640 (31).png

640 (32).png

图5 不同硬碳材料HK-吸附-孔径分布图(-196℃下N2吸附测试)


为了提升微孔阶段的分析效率,我们还使用了CO2气体在0℃条件下进行微孔阶段的孔径分析(1 nm以下),如图6所示。通过分析发现,其在0.624 nm和0.649 nm处存在一个集中的孔径分布,且孔径分布曲线平滑,能较为直观的看出其材料内部在0.35 nm~1 nm范围内微孔的分布和占比情况,进而能为储钠机理的分析和性能优化提供更为可靠的孔径结构数据支撑。

640 (33).png

640 (34).png

图6 不同生物质硬碳材料HK-吸附-孔径分布图(0℃下CO2吸附测试)


05国仪精测V-Sorb X800系列

国仪精测V-Sorb X800系列比表面及孔径分析仪采用静态容量法测试原理,具备完全的自动化操作,人性化的操作界面,简单易学。产品技术通过机械工业联合会科技成果鉴定,被欧美高校、科研实验室选购使用,获得一致好评,树立了优良的国产品牌形象。

640 (79).jpg

全自动比表面及孔径分析仪V-Sorb X800系列


参考文献:

[1] 冯鑫, 李莹, 刘明权等. 硬碳材料的功能化设计及其在钠离子电池负极中的应用[J]. 硅酸盐学报, 2022, 50(07): 1838-1851.

[2] Chen X, Liu C, Fang Y, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150.

[3] 董瑞琪, 吴锋, 白莹等. 钠离子电池硬碳负极储钠机理及优化策略[J]. 化学学报, 2021, 79(12): 1461.

[4] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271.

[5] Li Y, Lu Y, Meng Q, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852.

[6] Zhang B, Ghimbeu C M, Laberty C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6(1): 1501588.

[7] Yang J, Wang X, Dai W, et al. From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage[J]. Nano-micro letters, 2021, 13: 1-14.


更多应用案例

请扫码获取完整报告PDF

640 (35).png


标签: 钠离子电池

参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
看了该资讯的人还看了
你可能还想看
  • 资讯
  • 技术
  • 百科
  • 应用
  • 激光粒度仪在疫苗中的应用
    通过精确测量粒子大小,激光粒度仪帮助科学家和生产人员控制疫苗的质量和效果。在疫苗的制备过程中,确保疫苗成分的粒度分布符合要求,不仅能够提高疫苗的稳定性,还能够增强免疫反应的效果,从而更好地保障公众健康。本文将深入探讨激光粒度仪在疫苗生产中的重要应用,及其如何帮助提升疫苗的质量控制。
    2025-10-05135阅读 激光粒度仪
  • 工业插头在机房中的应用
    为了确保设备的正常运行并保障安全,工业插头作为重要的电力连接设备,发挥着不可忽视的作用。本文将详细探讨工业插头在机房中的应用,阐述其重要性、功能以及如何帮助优化电力供应与管理,确保设备的高效、安全运行。
    2025-10-10118阅读 工业插头
  • 液氮罐在工业中的应用
    随着科技的发展,液氮罐的使用越来越普及,尤其是在生命科学、食品加工、金属加工等行业中,液氮以其独特的低温特性,提供了诸多重要的技术支持和工艺创新。本文将深入探讨液氮罐在工业中的多种应用,揭示其在不同领域中的重要作用,并分析如何通过合理利用液氮罐提高生产效率和产品质量。
    2025-10-12143阅读 液氮罐
  • 液相色谱仪在食品安全中的应用
    液相色谱仪是一种新型综合分离分析仪器,在液相色谱仪的分离技术基础上加入了液相色谱技术,对被测食品基本成分进行液相色谱分析,并以高压输出的方式实现对检测结果的输出,形成对被测食品质量的综合检测结果。
    2025-10-181991阅读
  • 热重分析仪在药学中的应用
    热重分析通过对样品在加热过程中质量变化的监测,能够有效地评估物质的热稳定性、成分组成及其分解特性。在药学领域,TGA不仅能帮助科学家深入理解药物的物理化学性质,还能为药品的质量控制、稳定性研究以及新药研发提供可靠的数据支持。本文将详细探讨热重分析仪在药学中的多重应用,及其对药物开发和生产的关键作用。
    2025-10-18195阅读 热重分析仪
  • 查看更多
相关厂商推荐
  • 品牌
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

热点资讯
超声波测试仪 用于混凝土等材料实验测定仪
探寻甲酸乙酯检测仪的优秀品牌与厂家推荐
病毒检测仪厂家推荐:聚焦生物安全的安帕尔科技
氟利昂报警器适用于哪些场景
2-氯-2-甲基丙烷检测仪厂家哪家好?安帕尔科技专业定制方案!
天然气报警器有哪些特点
预算40万元 复旦大学附属中山医院 采购活体化学物质实时分析仪
预算120万元 华中科技大学同济医学院附属同济医院 采购铒激光仪
预算35万元 华中科技大学同济医学院附属同济医院 采购多功能微孔板检测仪
煤油检测仪品牌有哪些?安帕尔以专业能力和“六心”理念领跑市场
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消