-
-
塑料电气强度试验仪
- 品牌:北京北广精仪
- 型号: BDJC-50KV
- 产地:北京 海淀区
- 供应商报价:¥38000
-
北京北广精仪仪器设备有限公司
更新时间:2025-05-20 07:57:50
-
销售范围售全国
入驻年限第10年
营业执照已审核
- 同类产品绝缘漆漆膜电压击穿试验仪(35件)
立即扫码咨询
联系方式:400-855-8699转8003
联系我们时请说明在仪器网(www.yiqi.com)上看到的!
扫 码 分 享 -
为您推荐
产品特点
- 塑料电气强度试验仪用于高压输电线路、变压器、开关设备的绝缘性能测试,确保设备在高电压环境下的长期稳定运行。应用于变电站、电网设备的安全性评估,防止因绝缘失效导致的电力系统故障。
详细介绍
塑料电气强度试验仪重要性保障电气安全的核心工具通过精确测定击穿电压,识别绝缘材料的性能边界,避免设备因过压引发火灾、爆炸等事故。在电力设备制造和检修环节中,作为质量控制的“后防线”,减少因绝缘失效导致的经济损失。推动技术标准化与合规性测试数据是产品符合IEC 60243、GB/T 1408等国际/国内标准的关键依据,直接影响市场准入资格。为电气设备的设计优化提供量化支撑,例如通过击穿电压值确定绝缘层厚度或材料选型。支持科研与产业升级助力新型绝缘材料的研发,推动电力设备小型化、高效化发展(如超高压变压器、紧凑型开关柜)。通过长期性能监测数据,建立材料老化模型,为设备寿命预测和预防性维护提供科学依据。
塑料电气强度试验仪工作原理核心原理电压梯度施加通过高压发生器输出可调的交流(AC)、直流(DC)或脉冲电压,以恒定速率(如0.1-5 kV/s)逐步提升至被测材料表面,直至其绝缘性能失效。电压施加过程中,仪器实时监测电场强度变化,捕捉材料极化、电导及局部放电等物理现象,直至发生不可逆击穿。击穿判定与数据采集。当材料达到介电强度极限时,电流骤增且电压突变,控制系统通过高精度传感器捕获电流异常信号,并记录此时的峰值电压作为击穿电压值(单位:kV/mm)。数据经处理后自动生成击穿强度、耐压时间等关键参数,支持图表化展示及导出。关键组件协同机制高压发生器支持0-100 kV连续输出,部分定制型号可达更高范围;通过AC/DC/脉冲模式切换满足不同测试标准需求(如IEC 60243、ASTM D149)。
产品型号:BDJC-10KV、BDJC-50KV、BJC-100KV
产品品牌:北京北广精仪
控制方式:计算机控制
符合标准:GB/T1408、ASTM D149、IEC60243-1等
适用材料:橡胶、塑料、薄膜、陶瓷、玻璃、漆膜、树脂、电线电缆、绝缘油等绝缘材料
测试项目:击穿电压测试、介电强度测试、电气强度测试、耐电压击穿强度测试等
试验电压:10KV、20KV、50KV、100KV、150KV等
电压精度:≤1%
适用材料:绝缘材料
升压速率:10V/S-5KV/S
试验方式:交流/直流、耐压、击穿、梯度升压
控制系统:PLC控制升压
核心部件:采用进口配件
试验介质:绝缘油、空气
显示方式:曲线显示、数据打印
其它特点:无线蓝牙控制
设备组成:主机、计算机、电极
电极规格:25mm、75mm、6mm
电器容量:3KVA、5KVA、10KVA
耐压时间:0-8H
安全保护:九级安全保护
质保日期:三年、终身维护。
培训方式:工程师上门培训安装
出据证书:514所、304所、科学研究院等单位均可
绝缘强度与击穿电压之间有什么关系?
一、定义与基本关系
击穿电压
定义:在强电场作用下,绝缘材料失去绝缘性能而变成导体时的临界电压值。
单位:千伏(kV)或伏特(V)。
绝缘强度(击穿场强)
定义:单位厚度的绝缘材料能承受的电场强度,反映材料本身的耐电能力。
单位:千伏/毫米(kV/mm)或兆伏/米(MV/m)。
二、区别与联系
物理意义差异
击穿电压:表征材料在特定厚度下的耐压极限,与材料厚度直接相关。
绝缘强度:反映材料单位厚度的耐电场能力,是材料本身的固有属性。
应用场景差异
绝缘强度:用于横向对比不同材料的绝缘性能(如塑料、陶瓷等)。
击穿电压:指导电气设备设计时确定绝缘层厚度或安全电压阈值。
影响因素
绝缘强度:主要由材料组成、微观结构及温度决定(如高温下易发生热击穿)。
击穿电压:除材料本身外,还受厚度、环境温湿度及电压类型(交流/直流)影响。
三、典型应用
材料筛选:高绝缘强度材料(如E=30kV/mm的陶瓷)适用于高压变压器绝缘层。
设备设计:通过击穿电压公式反推绝缘层小厚度(如电缆绝缘层设计)。
安全评估:结合两者关系验证电力设备长期运行的可靠性(如光伏组件封装材料测试)
总结
绝缘强度是材料抵抗电场破坏的固有属性,而击穿电压是其厚度相关的耐压表现。两者通过数学公式关联,共同为绝缘材料性能评估和电气设备设计提供核心依据
击穿电压测试方法主要包括以下几种类型及操作流程:
一、测试方法分类
工频交流击穿测试
原理:施加工频交流电压并逐步升压至试样击穿,记录击穿电压值37。
步骤:
样品安装于电极间(如漆包线缠绕于圆柱形电极)7。
设置升压速率(如100-500V/s)78。
持续升压直至击穿,记录击穿电压38。
直流击穿测试
原理:采用直流电压评估材料在稳定电场下的绝缘性能68。
步骤:
连接直流高压电源,升压速率较慢(如50-200V/s)67。
观察电流变化,记录击穿瞬间电压值68。
脉冲击穿测试
原理:模拟瞬态过电压(如雷击),测试材料在高频或脉冲条件下的绝缘强度67。
步骤:
施加标准波形脉冲电压(如雷电冲击波形)8。
多次冲击后记录击穿电压68。
局部放电与热击穿测试
局部放电:监测绝缘材料内部放电信号,评估潜在缺陷6。
热击穿:结合升温与升压,测试材料在高温下的耐压能力6。
二、通用操作流程
准备阶段
检查设备连接线、电极接触状态及样品完整性35。
设置环境条件(温度、湿度)并穿戴防护装备(绝缘手套、护目镜)35。
设备连接与参数设置
高压电源连接至电极,串联电压/电流表35。
选择升压模式(匀速或阶梯升压)及量程34。
测试执行
启动升压系统,实时监测电压/电流变化35。
击穿后自动切断电源并记录数据,重复测试取平均值37。
安全防护
设备配置过流保护、门联锁及放电装置24。
直流测试后需手动放电以避免触电26。
三、测试标准与设备配置
适用标准
国际标准:ASTM D149(固体材料介电击穿测试)28。
国内标准:GB/T 1408.1-2006(绝缘材料电气强度试验)28。
设备核心参数
电压范围:覆盖交流/直流0-150kV(如ZJC-150E型号)4。
升压速率:0.05-5kV/s可调48。
电极设计:圆形电极(直径25/75mm)减少边缘放电影响27。
四、典型应用场景
光伏材料:EVA封装材料需验证工频/直流击穿强度2。
漆包线:通过交流或直流测试评估绝缘层极限电压17。
电缆与变压器:耐压试验确保设备长期运行稳定性8。
以上方法通过多维度评估材料绝缘性能,确保电气设备的安全性与合规性
产品安全合规性测试中的击穿电压检测
一、测试标准与规范
国际标准
IEC 60243-1:定义高压试验的基本术语、试验条件及程序,适用于电气设备和材料的击穿电压测试。
ASTM D149:针对固体绝缘材料的电气强度测试,包括击穿电压测定。
国内标准
GB/T 1408.1-2006:规定绝缘材料电气强度试验方法,明确工频/直流击穿测试流程。
GB/T 4074.5:漆包线击穿电压测试的专项标准,要求验证绝缘层极限耐压性能。
二、测试流程与操作
样品准备
清洁并干燥样品表面,避免污染物或潮湿影响测试结果。
根据材料类型(如漆包线、云母片、碳化硅)选择电极夹具。
设备配置
使用电压击穿试验仪(如BDJC-50KV型号),支持交流/直流0-150kV测试范围。
串联电压/电流表监测实时数据,配置过流保护及门联锁装置保障安全。
参数设置与执行
按标准设置升压速率(如100-500V/s)、电压类型(工频/直流)及环境温湿度。
逐步升压至击穿,记录临界电压值并重复测试取平均值。
三、合规性验证目标
安全性能验证
确定绝缘材料的击穿场强(单位厚度耐压能力),防止设备因绝缘失效引发火灾或短路。
检测潜在缺陷(如漆膜针孔、杂质),确保产品无局部绝缘薄弱点。
标准符合性
验证是否符合IEC 60851-5(漆包线)、UL 1449(电气设备)等行业准入要求。
通过加速老化测试(高温/高湿)模拟长期使用场景,评估材料耐久性。
四、典型应用场景
漆包线:测试绝缘层极限电压(如10kV以上),优化涂漆工艺并筛选合格产品。
云母片:通过工频击穿试验(200kV)验证高温环境下的绝缘可靠性。
碳化硅(SiC):评估其在高压电力电子设备中的击穿电压稳定性。
五、安全防护措施
操作规范:穿戴绝缘手套、护目镜,保持安全距离防止电弧伤害。
设备维护:定期校准仪器,测试后手动放电避免残余电压风险。
应急处理:配置紧急停机按钮及急救设备,确保突发状况可快速响应。
六、测试报告与改进
记录击穿电压、击穿位置及环境参数,分析数据是否符合设计预期。
通过对比不同工艺或材料的测试结果,优化生产流程并推动技术创新。
通过上述流程,击穿电压测试可有效保障产品安全合规性,同时为电气设备长期稳定运行提供科学依据
选择电压击穿试验仪时需综合考虑样品特性、测试标准、设备性能和安全要求等因素。以下是关键选型步骤和要点:
1. 明确测试目的与标准
应用场景:确定测试材料类型(如绝缘子、电缆、塑料、橡胶、薄膜等)及其使用环境(高压电器、电子元件等)。
测试标准:根据行业标准选择试验类型(如AC/DC/冲击电压),常见标准:
IEC 60243(国际电工委员会)
ASTM D149(美国材料与试验协会)
GB/T 16927(中国国家标准)
2. 确定电压类型
交流(AC)试验:适用于电容性绝缘材料(如电缆、电机绕组),模拟工频电压下的击穿行为。
直流(DC)试验:用于电阻性绝缘材料(如陶瓷、云母),测量静态击穿电压。
冲击(雷电)试验:评估材料抗瞬态过电压能力(如避雷器、高压开关)。
3. 核心参数选择
(1) 测试电压范围
根据样品耐压等级选择量程(例如:
低压材料:0–50 kV
高压绝缘子:100–500 kV
超高压设备:1–10 MV)
(2) 电极配置
样品尺寸与形状决定电极类型:
平板电极:适用于大面积样品(如薄膜、板材)。
球-平板电极:用于小体积样品(如橡胶、液体)。
圆柱电极:多用于电线绝缘测试。
电极间隙可调(常见范围:0.1–50 mm)。
(3) 输出功率
功率需满足升压速度要求(通常为1–1000 V/s),避免因功率不足导致升压失败。
(4) 升压速度
按标准规定选择(如IEC 60243-1要求10%额定电压/秒)
4. 设备功能需求
自动控制:支持预设电压、自动升压/降压、击穿自动停机。
数据记录:实时记录击穿电压、时间、电流曲线(需配备存储卡或USB接口)。
安全保护:
过流保护、过压保护、放电电阻。
紧急停止按钮和机械联锁装置。
环境适应性:温湿度控制(高湿度样品需防潮设计)。
5. 实验室条件
安装空间:设备尺寸及散热要求(高压设备需预留足够安全距离)。
供电要求:三相电源稳定性(尤其高压试验需稳压电源)。
6. 预算与品牌选择
入门级:国产设备(如上海华谊、常州朗普)适合常规测试(价格:10万–50万元)。
中:进口品牌(如Hipotronics、WEKA)精度高、功能全(价格:50万–200万元以上)。
特殊需求:定制化设备(如超高压试验台可达数百万伏)。
7. 验证与校准
选择具备CNAS或CMA认证的实验室进行设备校准。
定期维护(如更换电容、检查绝缘性能)以确保精度。
示例选型流程
1. 样品类型:测试10 kV电缆绝缘层(AC耐压试验)。
2. 标准依据:GB/T 12706.1-2020。
3. 参数选择:
电压范围:0–50 kV AC。
电极:球-平板(直径25 mm/50 mm)。
升压速度:2 kV/s。
4. 功能需求:自动记录击穿数据、安全联锁。
5. 预算:约30–80万元(国产中端设备)。
提示:若需具体型号推荐,可提供更多细节(如样品尺寸、测试标准、预算范围)。
电压击穿试验仪主要应用在以下行业:
电力行业
变压器:测试变压器的绝缘油、绝缘纸、绕组绝缘等的击穿电压和绝缘强度,确保变压器在高电压环境下稳定运行。
电缆:对电缆的绝缘层进行测试,评估其在不同电压下的绝缘性能,保证电缆传输电力的安全性和可靠性。
绝缘子:检测绝缘子的耐电压性能,判断其能否在高压线路中有效绝缘,防止漏电和闪络现象发生。
电子行业
电子元器件:如电容器、电阻器、电感器等,通过测试绝缘性能,筛选出合格的元器件,提高电子产品的稳定性和使用寿命。
电路板:对电路板的绝缘基材和绝缘涂层进行电压击穿试验,确保电路板在工作时不会发生短路等故障,保障电子产品的性能。通信行业
通信线缆:测试通信线缆的绝缘性能,保证信号在传输过程中不受干扰,防止因绝缘问题导致的信号衰减或中断。
光纤:评估光纤的绝缘护套和涂覆层的耐电压性能,确保光纤通信系统的安全稳定运行。
汽车行业
汽车电气系统:对汽车的电线束、绝缘插头、车载电池的绝缘部件等进行测试,保障汽车电气系统在各种工况下的安全性,防止电气故障引发的安全事故。
新能源汽车:针对新能源汽车的电池包、充电桩、高压线束等高压部件,进行绝缘性能测试,确保新能源汽车的高压系统安全可靠。
航空航天行业
航空航天器的电气系统:对航空航天器上的电线电缆、绝缘材料、电子设备的绝缘部件等进行严格的电压击穿试验,确保在高空中的极端环境下电气系统的安全性和可靠性,保障飞行安全。
航空航天复合材料:测于制造航空航天结构件的复合材料的绝缘性能,为材料的选择和应用提供依据。
材料科学研究领域
绝缘材料研发:研究新型绝缘材料的电气性能,通过电压击穿试验获取材料的击穿电压、击穿强度等数据,为材料的改进和优化提供参考。
功能材料研究:对磁性材料、光电材料、超导材料等功能材料进行电气绝缘强度测试,了解材料的电气性能边界。高压验仪采用计算机控制,通过人机对话方式,完成对绝缘介质材料的工频电压击穿,工频耐压试验。适 用于对固体绝缘材料(如:绝缘漆、树脂和胶、浸渍纤维制品、层压制品、云母及其制品、塑料、薄膜复合制品、陶瓷和玻璃等)在工频电压下击穿电压,击穿强度和耐电压的测试。绝缘材料耐电压击穿测试仪**北广精仪击穿电压测试仪的特色介绍
北广精仪作为国内领先的精密仪器制造商,其击穿电压测试仪凭借的性能和创新的设计,在电力、电子、材料科学等领域广受好评。以下是该产品的几大特色:
1. 高精度测量
北广精仪的击穿电压测试仪采用先进的数字信号处理技术,确保测量精度达到国际领先水平。无论是低电压还是高电压测试,仪器都能提供稳定、可靠的数据,满足各类材料的精确测试需求。
2. 宽范围测试
该仪器支持广泛的电压测试范围,从几伏到数十千伏,适用于不同材料的击穿电压测试。无论是绝缘材料、塑料、橡胶,还是半导体、陶瓷等,都能轻松应对。
3. 智能化操作
仪器配备了智能化操作系统,用户可通过触摸屏或计算机软件进行参数设置和数据分析。自动化的测试流程减少了人为误差,提升了测试效率。同时,仪器支持数据存储和导出功能,便于后续分析和报告生成。
4.多重安全保护
北广精仪击穿电压测试仪在设计上充分考虑了安全性,配备了过压保护、过流保护、短路保护等多重安全机制,确保测试过程中设备和操作人员的安全。
5. 模块化设计
仪器采用模块化设计,用户可根据需求灵活配置不同的测试模块,扩展仪器的功能和应用范围。这种设计不仅提高了仪器的适应性,还降低了维护和升级的成本。
6. 环境适应性
北广精仪的击穿电压测试仪具有良好的环境适应性,能够在高温、高湿等恶劣环境下稳定工作。其坚固的外壳和防尘防水设计,确保了仪器在复杂环境中的长期可靠性。
7. 高效节能
仪器采用了先进的节能技术,在保证高性能的同时,降低了能耗,符合现代工业对环保和节能的要求。
8. 完善的售后服务
北广精仪提供全面的售后服务,包括技术支持、设备维护和操作培训,确保用户能够充分利用仪器的各项功能,解决测试中的各种问题。
总结
北广精仪的击穿电压测试仪凭借其高精度、智能化、安全性和环境适应性,成为材料电性能测试领域的理想选择。无论是科研机构还是生产企业,都能通过这款仪器获得准确、可靠的测试数据,提升产品质量和研发效率。
如需了解更多信息,请访问北广精仪官方网站或联系当地销售代表。
电压击穿试验仪安全保护措施功能:
1、试验在试验箱中进行,试验箱门打开时电源加不到高压变压器输入端,即高压侧无电压。100KV测试设备高压电极距离试验箱壁的近距离大于270mm,50KV测试设备高压电极距离试验箱壁的近距离大于250mm,试验时即使人接触箱壁也不会有危险。
2、设备要安装单独的保护地线。接保护地线,主要是减少试样击穿时对周围产生的较强的电磁干扰。也可避免控制计算机失控。
3、该试验设备的电路设有多项保护措施,主要有:过流保护、过压保护、漏电保护、短路保护、直流试验放电报警,电磁放电等。
4、直流试验放电报警功能:在设备做完直流试验时,当开启试验门时设备会自动报警,直至使用设备上的放电装置放电后报警会自动取消.(注:因为直流试验后不放电会危险到人安全,不能直接拿取电极,起到提醒使用人员放电以免造成伤害)。
5、试验放电装置,电磁铁自动放电放置。
符合标准
GB1408.1-2016《绝缘材料电气强度试验方法工频下试验第2部分》
GBT13542.1-2009电气绝缘用薄膜
GB/T1695-2005《硫化橡胶工频击穿电压强度和耐电压的测定方法》
GB/T3333-1999《电缆纸工频击穿电压试验方法》
IEC 60455-2, 1998 电气绝缘用柑脂基反应复合物 第2部分:试验方法 IEC 60674-2: 1988 电气用塑料薄膜 第2部分z试验方法电气击穿试样承受电应力作用时,其绝缘性能严重损失,由此引起的试验田路电流促使相应的回路断路器动作.注:击穿通常是由试中羊和电极周围的气体或液体媒质中的局部放电引起,并使得较小电极(或等径两电极)边缘的试样遭到破坏闪络试样和电极周围的气体或液体媒质承受电应力作用时,其绝缘性能损失,由此引起的试验回路电流促使相应的回路断路器动作.注:碳化通道的出现或穿透试样的击穿可用于区分试验是击穿还是闪络。击穿电压<在连续升压试验中>在规定的试验条件下,试样发生击穿时的电压。<在逐级升压试验中>试样承受住的高电压,即在该电压水平下,整个时间内试样不发生击穿。电气强度在规定的试验条件下,击穿电压与施加电压的两电极之间距离的商。 注除非另有规定,应按本部分5.4规定测定两试验电极之间的距离。试验的意义按本部分得到的电气强度试验结果,能用来检测由于工艺变更、老化条件或其他制造或环境情况而引起的性能相对于正常值的变化或偏离,而很少能用于直接确定在实际应用中的绝缘材料的性能状态材料的电气强度测试值可受如下多种因素的影响:试样的状态a) 试样的厚度和均匀性,是否存在机械应力;b) 试样预处理,特别是干燥和浸渍过程;c) 是否存在孔隙、水分或其他杂质。试验条件a) 施加电压的频率、被形和升压速度或加压时间;b) 环境温度、气压和湿度;c) 电极形状、电植尺寸及其导热系数;d) 周围媒质的电、热特性。在研究还没有实际经验的新材料时,应考虑到所有这些有影响的因素本部分规定了一些特定的条件,以便迅速地判别材料,并可用以进行质量控制和类似的目的.用不同方法得到的结果是不能直接相比的,但每一结果可提供关于材料电气强度的资料。应该指出的是,大部分材料的电气强度随着电极间试样厚度的增加而减小,也随着电压施加时间的增加而减小。由于击穿前的表面放电的强度和延续时间对大多数材料测得的电气强度有显著影响,为了设计直到试验电压无局部放电的电气设备,必须知道材料击穿前无放电的电气强度,但本部分的方法通常不适用于提供这方面的资料。具有高电气强度的材料未必能耐长时期的劣化过程,例如热老化腐蚀或由于局部放电而引起化学腐蚀或潮湿条件下的电化学腐蚀或潮湿条件下的电化学腐蚀,而这些过程都会导致在运行中于较低的电场强度下发生破坏。电极和试样金属电极应始终保持光滑、清洁和无缺陷。注1:当对薄试样进行试验时,电极的维护格外重要为了在击穿时尽量减小电极损伤,优先采用不锈钢电极.接到电极上的导线既不应使得电极倾斟或其他移动或使得试样上压力变化,也不应使得试样周围的电场分布受到显著影响,注2:试验非常薄的薄膜(例如,<5μm厚>时,这些材料的产品标准应规定所用的电极、操作的具体程序和试样的制备方法。垂直于非叠层材料表面和垂直于叠层材料层向的试验植材和片状材料(包括纸植、纸、织物和薄膜)不等直径电极电极极由两个金属圆柱体组成,其边缘倒圆成半径为(3.0土0.2) mm的圆弧。其中一个电极的直径为(25士1) mm,高约25 mm,另一个电极直径为(75士。mm,高约 15 mm。
试验软件:
1、独立的控制系统,模块式结构方便于售后维护,外观美观大气,整个实验过程中无噪音,电级自动对中定位,操作方便,安全系数大,精度高。
2、由设备本身触摸屏及控制面板进行操作控制,如不需要进行曲线分析,可不配备计算机。
3、如需进行曲线分析,配备计算机,只进行数据及曲线记录功能,不进行设备控制,避免了试验人员在计算机和设备间交替操作,更人性化。
4、设备具有试验参数,相同试验条件不需要每次试验都进行设置,且断电仍会记忆醉后一次试验设置参数。
5、试验界面简单明了,且配有示意曲线说明,参数不同,曲线走势不同,方便理解。
6、控制面板简洁,功能标注明确,操作简单。
7、可记录并同时显示10次试验记录,方便试验数据的对比分析。且可以随时舍弃不理想的任意一组数据。
8、增加了U盘下载功能,可以将设备中的试验记录直接下载到U盘中。
9、如配备计算机,可生成详细的试验报告单,包括每一组具体信息,多组综合信息,及曲线。
10、设备试验界面采用仪表盘及数字同时且实时显示的方式,更方便试验过程的观看。
11、设备具有安全警告提示,在未关闭试验箱门时试验无法开始,且会弹出警告,在满度(即:高压变压器无输出)时会弹出警告,且试验过程中如果开门,试验会自动结束。
12、采用蓝牙数据传输,解决由于有隔离墙阻挡穿墙过线的麻烦和远距离操作安全可靠;
13、设备配有三色报灯,绿灯亮时表示箱门关闭良好可以开始试验,黄灯亮时表示试验箱门打开,此时可进行试样更换。红灯亮时表示高压大于0.5KV,此时不要开箱门。直流试验结束放电过程警报灯会闪烁且报警。(总结:绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压)
仪器组成:
1、升压部件:由调压器和升压变压器组成升压部分;
2、驱动部件:控制器和电机进电机均匀调节升压变压器;
3、检测部件:集成电路组成的测量电路;
4、计算机测控系统;
5、箱体控制系统
仪器优势:
1、自动放电;
2、交流电压、直流电压测试误差1%;
3、电极支架采用Y质环氧板;
4、软件可连续做10组试验对比;
5、试验曲线不同颜色,可叠加对比;
6、软件可设置电流保护功能;
7、带有主机控制区域,不通过电脑可单独控制主机;
8、主机带有电压、电流显示功能;
9、内置排风装置;
10、内置照明功能;
11、放电报警装置;
12、蓝牙远程控制;
13、三色灯报警装置(绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压);
14、可实现触摸屏或电脑双重操作;
15、可实现组合编程,梯度升压的升压和耐压时间可分别单独设置;
16、U盘下载功能,可以将设备中的试验记录直接下载到U盘中。
漆膜工频电压击穿试验仪两种试验方式介绍:
试验方式的选择在系统设置中进行。需要注意的是交流试验时,需要插入硅堆短路杆。直流试验时需要将硅堆短路杆拔出,以免影响实验系数,并且直流试验结束必须进行放电操作,以免残留余电对实验人员造成危险,放电过程如放电棒来回摆动,放电过程中警报灯闪烁,蜂鸣器报警,需等待蜂鸣器停止报警,警报灯不再闪烁,方可打开试验箱门。
三种试验方法介绍:
连续升压:连续升压又分为快速升压和慢速升压两种,其中快速升压为试样电压从零开始以选择的升压速率匀速升压,直到试样击穿为止,击穿电压为击穿瞬间的电压值。慢速升压为试样电压从零升压到达初始电压,到达初始电压后以选定的升压速率升压直到试样击穿,击穿电压为击穿瞬间的电压值。
逐级升压:试样电压从零快速升压到达初始电压,到达初始电压后以梯度保持时间为时间长度,稳定电压,梯度时间结束后继续以选定的升压速率升压,达到下一个梯度电压值再稳定电压,如此过程直到试样击穿。对于击穿电压的确定分为两种情况,可在试样设置中选择采样方式。
瞬时升压:试样电压直接到达初始电压,保持该电压设定时间直到试样击穿,击穿电压为击穿瞬间的电压值。
等直径电极如果使用一电极架便上下电极准确对中放置,误差在1. 0 mm内,则下电极直径可减小到(25士 。 mm,两电极直径差不大于0. 2 mm. 其所测结果与5. 1. 1. 1不等直径电极测得的结果不一定相同。厚样品的试验当有规定时,厚度超过 3mm 的板材和片材应单面机加工至(3. 0 士 0. 2) mm. 然后,试验时将高压电极置于未加工的面上。注:为了避兔网络或因受现有设备限制,必要时可以根据需要,通过机加工把试样制备成更小的厚度。带、薄膜和窄条两个电极为两根金属棒,其直径为(6. 0±0. 1) mm. 垂直安装在电极架内,使一个电极在另一个电 撞上面,试样夹在棒的两个端面之间。上下电极要同心轴,误差在0.1 mm内。 两电极端面应与其轴向相垂直,端面的边缘倒成半径为(1. 0土0.2) mm的圆弧。 上电极压力为(50±2) g且应能在电极架内的沿垂直方向自由移动。出了一种合适的装置。 如果需要使试样在拉伸状态下进行试验,则应将试样夹在架子中,使试样披在如图2所示的规定的位置上。 为达到所需的拉伸,方便的办法是将试样的一端缠在可旋转的圆捧上。为了防止窄条边缘发生闪络,可用薄膜或其他薄的绝缘材料条搭盖在窄条边缘并夹住试样。 此外, 电极周围可以采用防弧密封固,此时电植和密封圈之间留有(1~2) mm的环状间隙。 下电极与试样之间的间隙(在上电极与试样接触之前>应小于0.1 mm。注:对薄膜的试验,见IEC60674-2,1998软管和软套管按GB/T7113. 2-2005进行试验。硬管内径100mm及以下的外电极是(25士1) mm宽的金属箱带,内电极是与内壁紧配合的导体,例如圆棒、管、金属箔或充填直径(0. 75~2. 0) mm的金属球,便与管材的内表面良好接触, 不管怎样,内电极的每端应至少伸出 外电极25 mm。注:当没有有害影响时,可用硅油、硅脂或凡士林将箔贴到试样的内外表面。 硬管(内径大于100 mm)外电极是(75土1)mm宽的金属锚带,内电极是直在(25±1)mm的圆形金属箔,金属箔应相当柔软以适应圆筒的曲率。浇注及模塑材料浇注材料按IEC 60455-2: 1998制样和试验。模塑材料应用一对球电极,每个球的直径为(20.0士0.1) mm,在排列电极时,使它们共有的轴线与试样平面垂直。热固性材料应用(1. 0土0.1) mm厚的试样,这些试样可以按ISO 295: 1991压塑成型或按ISO 10724: 1994注塑成型,其表面尺寸应足以防止闪络。注:如果不能应用(1. 0土0. 1) mm厚的试样,则可用(2. 0土O. 2) mm厚的试样。热塑性材料应用按ISO 294-1: 1996和ISO294-3: 1996中同型注塑成型试样,尺寸为60 mm×60 mm×1 mm. 如果该尺寸不足以防止闪络(见5. 3. 2)或按相关材科标准规定要求用压塑成型试样,此时用按 ISO 293: 1986压塑成型的平板试样,其直径至少为100 mm,厚(1.0±0.1) mm。注塑或压塑的条件见相关材料标准。如果没有可适用的材料标准,则这些条件必须经供需双方协商。硬质成型件对不能将其置于平面电极间的成型绝缘件,应采用对置的等直径球电极。通常用作这类试验的电极直径为12. 5 mm或20 mm。清漆按GB/T 1981. 2-2003进行试验充填胶电极是两个金属球,每个球的直径为(12. 5 ~ 13)mm. 水平同轴放置,除另有规定外,彼此相隔(1. 0土0.1) mm,并都嵌入充填胶内 。 应注意避免出现空隙,特别避免两电极间的空隙。 由于用不同的 电极距离得到的结果不能直接相比,因此必须在材科规范的试验报告中注明间隙距离.平待于非叠层材料表面和平行于叠层材料层向的试验如果不必区分由试样击穿引起的破坏和贯穿表面引起的破坏,则可使用5. 2.1或5. 2. 2 的电极,但 5. 2. 1的电极应被优先采用。当要求防止表面破坏时.应采用5. 2. 3的电般 。平行饭电极 板材和片材试验板材和片材时,试样厚度为被试材料厚度,试样表面为长方形,长(100士2) mm,宽(25. 0士 。.2) mm,试样两侧面应切成垂直于材料表面的两个平行平面。 试样夹在金属平行板之间,两金属板相距25mm,厚度不小于10 mm,电压施加在金属板上。对于薄材料可以用2个或3个试样恰当地放置 <即:使它们的表面形成合适的角度>以支撑上电极。电极应有足够大的尺寸,以覆盖试样边缘至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好的接触。电极的边缘应适当倒圆(半径为(3-5)mm),以避免电极的边与边之间的闪络(见图6)注,如果现有设备不能使试样击穿,则可以将试样宽度减少至05. 0±0. 2) mm或 (10.0土O. 2) mm. 试样宽度的这种减少,必须在报告中予以特别说明。这种电极仅适用于厚度至少为1. 5 mm的硬质材料的试验。硬管试验硬管时,试样是一个完整的环或圆弧长度为100 mm的一段环,其轴向长度为(25士0. 2) mm。试样两端应加工成垂直于管铀向的两个平行的平面。将试样放在两平行板电极之间按5. 2. 1. I所述的板材和片材的试验方法进行试验,必要时可用(2~3)个试样来支撑上电极。电极应有足够大的尺寸以使电极覆盖试样并至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好接触。锥销电极在试样上垂直试样表面钻两个相互平行的孔,两孔中心距离为(25土1) mm. 两孔的直径这样来确定:用锥度约2%的钱刀扩孔后每个孔的较大的一端的直径不小于4.5 mm且不大5. 5 mm.。钻好的两孔完全贯穿试样,但如果试样是大管子,则孔仅贯穿一个管壁,并在孔的整个长度上用铰刀扩孔。在钻孔和扩孔时,孔周围的材料不应有任何形式的损坏,如劈裂、破碎或碳化。用作电极的锥形销的锥度为(2.0土0. 2)%,并将锥形销压人<但不要锤人>两孔,以使它们能与试样紧密配合,并突出试样每一面至少2 mm(见图7a)和7b))这类电极仅适用于试验厚度至少为1. 5 mm的硬质材料。 平行圆柱形电极对厚度大于15mm的具有高电气强度的试样进行试验时,将试样切成100mm×50 mm,并如图8 所示钻两个孔,每个孔的直径比圆柱形电极的直径大,但差值不大于0.I mm.圆柱形电极直径为(6.0士0.1)mm,并有半球形端部,每个孔的底部是半球形以便与电极端配合,使得电极端部和孔的底部之间间隙在任何点都不超过0.05 mm。如果在材料规范中没有另外规定,则两孔沿其长度的侧面相距应是(10士1)mm,每孔应延伸到离相对的表面(2.25±0. 25) mm以内。两种任选形式的通风电极如回8所示.当使用带小槽的电极时,这些小槽位置应与电极间的间距正好相反。试样除了上述各条中己组述过的有关试样的情况外,通常还要注意下面儿点。制各固体材料试样时,应注意与电极接触的试样两表面要平行,而且应尽可能平整光滑。对于垂直于材料表面的试验,要求试样有足够大的面权以防止试验过程中发生闪络。对于垂直于材料表面的试验,不同厚度的试样其结果不能直接相比(见第4章)。 两电极间距离用来计算电气强度的两电植间距离值应为下列之一(按被试材料的规定)a) 标称厚度或两电极间距离(除非另有规定,一般均采用此值);b) 对于平行于表面的试验,两电极间的距离;c) 在每个试样上击穿点附近直接测悍的厚度或两电极间的距离。试验前的条件处理绝缘材料的电气强度随温度和水份含量而变化, 若被试材料已有规定,则应遵循此规定。 否则,除非另有商定条件,试样应在温度为(23土2)℃,相对湿度为(50士5)%条件下扯理不少于24 h。周围媒质材料应在为防止闪络而选取的周围媒质中试验。在大多数情况下,符合IEC 60296: 2003的变压器油是适用的媒质。对在矿物油中会引起膨胀的材料,此时其他的流体(例如硅油),可能是更合适的。对击穿电压值相对较低的试样,可在空气中试验,此时若要在高温下进行试验时,应注意即使在中等的试验电压下,在电极边缘的放电也会对测试值造成很大影响。如果试图在另一种媒质中时某种材料的性能进行试验评定,则可以应用这种媒质。所选取的媒质应对被试材料的危害影响是小的。周围媒质对试验结果可能有很大影响,特别是对易暖收的材料,如纸租纸板,因此必须在试样制备程序中确定全部的必要步骤(例如干燥和浸渍),以及试验过程中周围媒质的状态。必须有足够的时间让试样和电极达到所要求的温度,但有些材料会因长期处于高温而受到影响。在高温空气中的试验在高温空气中做试验,可在任何设计合理的烘箱中进行,烘箱要有足够大的体棋来容纳试样和电极,使官们在试验时不发生闪络。烘箱应装有空气循环装置使试样周围的温度在规定温度的土2℃内且应大体上保持均匀,把温度计、热电偶或其他测量温度的装置尽可能放在实验点附近测量温度在班体申的试验当试验要在绝缘液体中进行时,除非其他液体更合适外,一般应使用符合IEC 60296: 2003的变庄器油。 必须保证穰体有足够的电气强度以避免网络- 在具有比变压器油更高的的相对电容率的液体中 试验的试样,会出现比在变压器袖中试验时更高的电气强度。 降低变压器油或其他掖体电气强度的杂 质,也可能会增加试样上测得的电气强度。高温下的试验可以在烘箱内的盛液容器中进行<见7. 1),也可在绝缘油作为竟也传递介质的恒温控制的油播中进行。在这种情况下,应采用合适的液体循环措施,以便试样周围的温度大致均匀,并保持在规定温度的±2℃内。电气设备电源用一个可变低压正弦电源供给一个升压变压器来获得试验电压。 变压器及其电源和它的调节装置应具有如下特性。 在回路中有试样的情况下,对等于和小于试样击穿电压的所有电压,试验电压的峰值与有效值(r, m. s)之比为根号2(1土5%)即(1. 34~1. 48)。电源的容量应足够大,使之在发生击穿之前均能符合8. 1. 1 要求,对于大多数材料,在使用推荐的电极的情况下,通常40 mA的输出电流容量巳足够。对于大多数试验来说,电源容量范围为;对于10kV及以下的小电容试样的试验,其容量为0.5kVA;对于试验电压为100 kV以下者则为5 kVA。可变低压电源调节装置应能使试验电压平滑、均匀地变化,无过冲现象。当用一个自耦调压器按第10章施加电压时,所产生的递增的增量不应超过预期击穿电压的2%。对短时试验或快速升压试验,zui好使用马达驱动调节装置。为了保护电源不致损坏,应装有一个装置使在试样击穿的几个周期内切断电源。这个装置可以由一个接在高压回路中的电流敏感元件组成。为了限制在击穿时由电流或电压冲击引起电极的损伤,要求将一个具有合适值的电阻器与电极串联。电阻值的大小应取决于电极所允许的损伤程度。注:应用阻值很高的电阻器可能会导致测得的击穿电压比应用阻值低的电阻器测得的击穿电压值高。电压测量 按等效有效值记录电压值。 较好的方法是用一块峰值电压表并将其读数除以根号2。 电压测量回路的总误差应不超过测得值的5%,该误差包括了由于电压表的响应时间所引起的误差。 在所用的任何升压速率下,该响应时间引起的误差应不大于击穿电压的1%。果用符合8. 2.1要求的电压表来测量施加到电极上的电压。好将它直接接到电极上,也可通过分压器或电压互感器接到电极上。 如果使用升压变压器的测量线圈来测量电压,则施加到电极上的 电压的指示正确度应不受升压变压器负载和串联电阻器的影响。希望在击穿后能在电压表上保留大试验电庄的读数值,从而正确地读出并记录击穿电压,但指示嚣应对在击穿时发生的瞬变现象不敏感。
ASTM D149电压击穿/介电强度/耐压试验仪
陶瓷材料击穿强度试验仪
陶瓷材料击穿电压试验仪
陶瓷材料电气强度试验仪
漆膜介电强度试验仪
漆膜击穿电压试验仪
漆膜电气强度试验仪
塑料介电强度试验仪
塑料击穿电压试验仪
塑料电气强度试验仪
GB1408-2016绝缘材料电气强度试验仪
GB/T1695-2005硫化橡胶工频电压击穿强度和耐电压的测试仪
GB/T3333电缆纸工频击穿电压试验仪
HG/T 3330绝缘漆漆膜击穿强度测定仪
GB12656电容器纸工频击穿电压测定仪
相关产品