仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

产品中心

当前位置:仪器网>产品中心> 北京北广精仪仪器设备有限公司>电压击穿试验仪>绝缘漆漆膜电压击穿试验仪>陶瓷材料击穿强度检测仪
收藏  

陶瓷材料击穿强度检测仪

立即扫码咨询

联系方式:400-855-8699转8003

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

扫    码    分   享
为您推荐

产品特点

陶瓷材料击穿强度检测仪电气强度的中值<以kV/mm表示>或击穿电压的中值(以kV表示)测试固体绝缘材料(塑料、薄膜、陶瓷、树脂等)在工频或直流电压下的击穿强度(kV/mm)及耐压时间,为电力设备、新能源等领域提供关键数据支持。

详细介绍

陶瓷材料击穿强度检测仪工作原理核心原理‌电压梯度施加‌通过高压发生器输出可调的交流(AC)、直流(DC)或脉冲电压,以恒定速率(如0.1-5 kV/s)逐步提升至被测材料表面,直至其绝缘性能失效。电压施加过程中,仪器实时监测电场强度变化,捕捉材料极化、电导及局部放电等物理现象,直至发生不可逆击穿。

陶瓷材料击穿强度检测仪‌电压范围‌输出范围:AC/DC 0-50kV连续可调,BDJC-100KV可达100kV。升压速率:100-3000V/s无极调速,满足不同材料的梯度测试需求。

‌精度与安全‌电压测量误差≤2%,配备三级联锁防护(机械/电子/物理隔离)。过流保护、漏电保护及直流试验自动放电功能,确保操作安全。

产品型号:BDJC-10KV、BDJC-50KV、BJC-100KV

产品品牌:北京北广精仪

控制方式:计算机控制

符合标准:GB/T1408、ASTM D149、IEC60243-1等

适用材料:橡胶、塑料、薄膜、陶瓷、玻璃、漆膜、树脂、电线电缆、绝缘油等绝缘材料

测试项目:击穿电压测试、介电强度测试、电气强度测试、耐电压击穿强度测试等

试验电压:10KV、20KV、50KV、100KV、150KV等

电压精度:≤1%

适用材料:绝缘材料

升压速率:10V/S-5KV/S

试验方式:交流/直流、耐压、击穿、梯度升压

微信图片_20240308104000.jpg

‌智能控制‌

动态绘制试验曲线,支持数据自动存储及EXCEL/WORD导出。

闭环控制系统实时监测升压曲线,避免阶梯式波动。

标准体系与测试方法

‌中国标准‌

GB/T 1408.1-2006、GB/T 1695-2005等,明确试样预处理、电极规格及油温控制范围(如25±2℃)。

‌国际标准对比‌

ASTM D149与IEC 60243在升压方式、测试次数等存在差异(如ASTM允许步进升压,IEC仅认可连续升压)。

‌测试模式‌

连续升压:直接测量击穿电压临界值。

耐压测试:保持规定电压时长验证材料稳定性。

操作规范与注意事项

‌环境与样品要求‌

环境湿度≤80%,试样需洁净干燥并严格防尘避光。

液体介质(如变压器油)需控制温度波动±2℃。

‌安全操作‌

至少两人协作,禁止直接接触电极及油杯内部。

设备需独立接地,防止电磁干扰导致数据异常。

‌仪器校准‌

采用四级校准体系(包括温度补偿设计),确保高压线圈稳定输出。

选型与发展趋势

‌设备选型要点‌

先支持多标准(GB、IEC、ASTM)的智能化型号BDJC系列。

关注升压速率调节精度及数据采集抗干扰能力。

‌技术升级方向‌

集成AI算法优化测试效率,开发高温/低温环境适配模块。

增强远程监控功能,满足工业4.0自动化测试需求。

IEC 60455-2, 1998 电气绝缘用柑脂基反应复合物 第2部分:试验方法 IEC 60674-2: 1988 电气用塑料薄膜 第2部分z试验方法电气击穿试样承受电应力作用时,其绝缘性能严重损失,由此引起的试验田路电流促使相应的回路断路器动作.注:击穿通常是由试中羊和电极周围的气体或液体媒质中的局部放电引起,并使得较小电极(或等径两电极)边缘的试样遭到破坏闪络试样和电极周围的气体或液体媒质承受电应力作用时,其绝缘性能损失,由此引起的试验回路电流促使相应的回路断路器动作.注:碳化通道的出现或穿透试样的击穿可用于区分试验是击穿还是闪络。击穿电压<在连续升压试验中>在规定的试验条件下,试样发生击穿时的电压。<在逐级升压试验中>试样承受住的高电压,即在该电压水平下,整个时间内试样不发生击穿。电气强度在规定的试验条件下,击穿电压与施加电压的两电极之间距离的商。 注除非另有规定,应按本部分5.4规定测定两试验电极之间的距离。试验的意义按本部分得到的电气强度试验结果,能用来检测由于工艺变更、老化条件或其他制造或环境情况而引起的性能相对于正常值的变化或偏离,而很少能用于直接确定在实际应用中的绝缘材料的性能状态材料的电气强度测试值可受如下多种因素的影响:试样的状态a) 试样的厚度和均匀性,是否存在机械应力;b) 试样预处理,特别是干燥和浸渍过程;c) 是否存在孔隙、水分或其他杂质。试验条件a) 施加电压的频率、被形和升压速度或加压时间;b) 环境温度、气压和湿度;c) 电极形状、电植尺寸及其导热系数;d) 周围媒质的电、热特性。在研究还没有实际经验的新材料时,应考虑到所有这些有影响的因素本部分规定了一些特定的条件,以便迅速地判别材料,并可用以进行质量控制和类似的目的.用不同方法得到的结果是不能直接相比的,但每一结果可提供关于材料电气强度的资料。应该指出的是,大部分材料的电气强度随着电极间试样厚度的增加而减小,也随着电压施加时间的增加而减小。由于击穿前的表面放电的强度和延续时间对大多数材料测得的电气强度有显著影响,为了设计直到试验电压无局部放电的电气设备,必须知道材料击穿前无放电的电气强度,但本部分的方法通常不适用于提供这方面的资料。具有高电气强度的材料未必能耐长时期的劣化过程,例如热老化腐蚀或由于局部放电而引起化学腐蚀或潮湿条件下的电化学腐蚀或潮湿条件下的电化学腐蚀,而这些过程都会导致在运行中于较低的电场强度下发生破坏。电极和试样金属电极应始终保持光滑、清洁和无缺陷。注1:当对薄试样进行试验时,电极的维护格外重要为了在击穿时尽量减小电极损伤,优先采用不锈钢电极.接到电极上的导线既不应使得电极倾斟或其他移动或使得试样上压力变化,也不应使得试样周围的电场分布受到显著影响,注2:试验非常薄的薄膜(例如,<5μm厚>时,这些材料的产品标准应规定所用的电极、操作的具体程序和试样的制备方法。垂直于非叠层材料表面和垂直于叠层材料层向的试验植材和片状材料(包括纸植、纸、织物和薄膜)不等直径电极电极极由两个金属圆柱体组成,其边缘倒圆成半径为(3.0土0.2) mm的圆弧。其中一个电极的直径为(25士1) mm,高约25 mm,另一个电极直径为(75士。mm,高约 15 mm。 两个电极同铀放置,误差在 2mm内,如图la)所示。1、绝缘试样高低温空气中击穿、耐压试验或阶梯试验;绝缘试样高低温浸油中击穿、耐压试验或阶梯试验;绝缘试样空气中击穿、耐压试验或阶梯试验;绝缘试样浸油中击穿、耐压试验或阶梯试验;

试验软件:

1、独立的控制系统,模块式结构方便于售后维护,外观美观大气,整个实验过程中无噪音,电级自动对中定位,操作方便,安全系数大,精度高。

2、由设备本身触摸屏及控制面板进行操作控制,如不需要进行曲线分析,可不配备计算机。

3、如需进行曲线分析,配备计算机,只进行数据及曲线记录功能,不进行设备控制,避免了试验人员在计算机和设备间交替操作,更人性化。

4、设备具有试验参数,相同试验条件不需要每次试验都进行设置,且断电仍会记忆醉后一次试验设置参数。

5、试验界面简单明了,且配有示意曲线说明,参数不同,曲线走势不同,方便理解。

6、控制面板简洁,功能标注明确,操作简单。

7、可记录并同时显示10次试验记录,方便试验数据的对比分析。且可以随时舍弃不理想的任意一组数据。

8、增加了U盘下载功能,可以将设备中的试验记录直接下载到U盘中。

9、如配备计算机,可生成详细的试验报告单,包括每一组具体信息,多组综合信息,及曲线。

10、设备试验界面采用仪表盘及数字同时且实时显示的方式,更方便试验过程的观看。

11、设备具有安全警告提示,在未关闭试验箱门时试验无法开始,且会弹出警告,在满度(即:高压变压器无输出)时会弹出警告,且试验过程中如果开门,试验会自动结束。

12、采用蓝牙数据传输,解决由于有隔离墙阻挡穿墙过线的麻烦和远距离操作安全可靠;

13、设备配有三色报灯,绿灯亮时表示箱门关闭良好可以开始试验,黄灯亮时表示试验箱门打开,此时可进行试样更换。红灯亮时表示高压大于0.5KV,此时不要开箱门。直流试验结束放电过程警报灯会闪烁且报警。(总结:绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压)

仪器组成:

1、升压部件:由调压器和升压变压器组成升压部分;

2、驱动部件:控制器和电机进电机均匀调节升压变压器;

3、检测部件:集成电路组成的测量电路;

4、计算机测控系统;

5、箱体控制系统

仪器优势:

1、自动放电;

2、交流电压、直流电压测试误差1%;

3、电极支架采用Y质环氧板;

4、软件可连续做10组试验对比;

5、试验曲线不同颜色,可叠加对比;

6、软件可设置电流保护功能;

7、带有主机控制区域,不通过电脑可单独控制主机;

8、主机带有电压、电流显示功能;

9、内置排风装置;

10、内置照明功能;

11、放电报警装置;

12、蓝牙远程控制;

13、三色灯报警装置(绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压);

14、可实现触摸屏或电脑双重操作;

15、可实现组合编程,梯度升压的升压和耐压时间可分别单独设置;

16、U盘下载功能,可以将设备中的试验记录直接下载到U盘中。

漆膜工频电压击穿试验仪两种试验方式介绍:

试验方式的选择在系统设置中进行。需要注意的是交流试验时,需要插入硅堆短路杆。直流试验时需要将硅堆短路杆拔出,以免影响实验系数,并且直流试验结束必须进行放电操作,以免残留余电对实验人员造成危险,放电过程如放电棒来回摆动,放电过程中警报灯闪烁,蜂鸣器报警,需等待蜂鸣器停止报警,警报灯不再闪烁,方可打开试验箱门。

三种试验方法介绍:

连续升压:连续升压又分为快速升压和慢速升压两种,其中快速升压为试样电压从零开始以选择的升压速率匀速升压,直到试样击穿为止,击穿电压为击穿瞬间的电压值。慢速升压为试样电压从零升压到达初始电压,到达初始电压后以选定的升压速率升压直到试样击穿,击穿电压为击穿瞬间的电压值。

逐级升压:试样电压从零快速升压到达初始电压,到达初始电压后以梯度保持时间为时间长度,稳定电压,梯度时间结束后继续以选定的升压速率升压,达到下一个梯度电压值再稳定电压,如此过程直到试样击穿。对于击穿电压的确定分为两种情况,可在试样设置中选择采样方式。

瞬时升压:试样电压直接到达初始电压,保持该电压设定时间直到试样击穿,击穿电压为击穿瞬间的电压值。

等直径电极如果使用一电极架便上下电极准确对中放置,误差在1. 0 mm内,则下电极直径可减小到(25士 。 mm,两电极直径差不大于0. 2 mm. 其所测结果与5. 1. 1. 1不等直径电极测得的结果不一定相同。厚样品的试验当有规定时,厚度超过 3mm 的板材和片材应单面机加工至(3. 0 士 0. 2) mm. 然后,试验时将高压电极置于未加工的面上。注:为了避兔网络或因受现有设备限制,必要时可以根据需要,通过机加工把试样制备成更小的厚度。带、薄膜和窄条两个电极为两根金属棒,其直径为(6. 0±0. 1) mm. 垂直安装在电极架内,使一个电极在另一个电 撞上面,试样夹在棒的两个端面之间。上下电极要同心轴,误差在0.1 mm内。 两电极端面应与其轴向相垂直,端面的边缘倒成半径为(1. 0土0.2) mm的圆弧。 上电极压力为(50±2) g且应能在电极架内的沿垂直方向自由移动。出了一种合适的装置。 如果需要使试样在拉伸状态下进行试验,则应将试样夹在架子中,使试样披在如图2所示的规定的位置上。 为达到所需的拉伸,方便的办法是将试样的一端缠在可旋转的圆捧上。为了防止窄条边缘发生闪络,可用薄膜或其他薄的绝缘材料条搭盖在窄条边缘并夹住试样。 此外, 电极周围可以采用防弧密封固,此时电植和密封圈之间留有(1~2) mm的环状间隙。 下电极与试样之间的间隙(在上电极与试样接触之前>应小于0.1 mm。注:对薄膜的试验,见IEC60674-2,1998软管和软套管按GB/T7113. 2-2005进行试验。硬管内径100mm及以下的外电极是(25士1) mm宽的金属箱带,内电极是与内壁紧配合的导体,例如圆棒、管、金属箔或充填直径(0. 75~2. 0) mm的金属球,便与管材的内表面良好接触, 不管怎样,内电极的每端应至少伸出 外电极25 mm。注:当没有有害影响时,可用硅油、硅脂或凡士林将箔贴到试样的内外表面。 硬管(内径大于100 mm)外电极是(75土1)mm宽的金属锚带,内电极是直在(25±1)mm的圆形金属箔,金属箔应相当柔软以适应圆筒的曲率。浇注及模塑材料浇注材料按IEC 60455-2: 1998制样和试验。模塑材料应用一对球电极,每个球的直径为(20.0士0.1) mm,在排列电极时,使它们共有的轴线与试样平面垂直。热固性材料应用(1. 0土0.1) mm厚的试样,这些试样可以按ISO 295: 1991压塑成型或按ISO 10724: 1994注塑成型,其表面尺寸应足以防止闪络。注:如果不能应用(1. 0土0. 1) mm厚的试样,则可用(2. 0土O. 2) mm厚的试样。热塑性材料应用按ISO 294-1: 1996和ISO294-3: 1996中同型注塑成型试样,尺寸为60 mm×60 mm×1 mm. 如果该尺寸不足以防止闪络(见5. 3. 2)或按相关材科标准规定要求用压塑成型试样,此时用按 ISO 293: 1986压塑成型的平板试样,其直径至少为100 mm,厚(1.0±0.1) mm。注塑或压塑的条件见相关材料标准。如果没有可适用的材料标准,则这些条件必须经供需双方协商。硬质成型件对不能将其置于平面电极间的成型绝缘件,应采用对置的等直径球电极。通常用作这类试验的电极直径为12. 5 mm或20 mm。清漆按GB/T 1981. 2-2003进行试验充填胶电极是两个金属球,每个球的直径为(12. 5 ~ 13)mm. 水平同轴放置,除另有规定外,彼此相隔(1. 0土0.1) mm,并都嵌入充填胶内 。 应注意避免出现空隙,特别避免两电极间的空隙。 由于用不同的 电极距离得到的结果不能直接相比,因此必须在材科规范的试验报告中注明间隙距离.平待于非叠层材料表面和平行于叠层材料层向的试验如果不必区分由试样击穿引起的破坏和贯穿表面引起的破坏,则可使用5. 2.1或5. 2. 2 的电极,但 5. 2. 1的电极应被优先采用。当要求防止表面破坏时.应采用5. 2. 3的电般 。平行饭电极 板材和片材试验板材和片材时,试样厚度为被试材料厚度,试样表面为长方形,长(100士2) mm,宽(25. 0士 。.2) mm,试样两侧面应切成垂直于材料表面的两个平行平面。 试样夹在金属平行板之间,两金属板相距25mm,厚度不小于10 mm,电压施加在金属板上。对于薄材料可以用2个或3个试样恰当地放置 <即:使它们的表面形成合适的角度>以支撑上电极。电极应有足够大的尺寸,以覆盖试样边缘至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好的接触。电极的边缘应适当倒圆(半径为(3-5)mm),以避免电极的边与边之间的闪络(见图6)注,如果现有设备不能使试样击穿,则可以将试样宽度减少至05. 0±0. 2) mm或 (10.0土O. 2) mm. 试样宽度的这种减少,必须在报告中予以特别说明。这种电极仅适用于厚度至少为1. 5 mm的硬质材料的试验。硬管试验硬管时,试样是一个完整的环或圆弧长度为100 mm的一段环,其轴向长度为(25士0. 2) mm。试样两端应加工成垂直于管铀向的两个平行的平面。将试样放在两平行板电极之间按5. 2. 1. I所述的板材和片材的试验方法进行试验,必要时可用(2~3)个试样来支撑上电极。电极应有足够大的尺寸以使电极覆盖试样并至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好接触。锥销电极在试样上垂直试样表面钻两个相互平行的孔,两孔中心距离为(25土1) mm. 两孔的直径这样来确定:用锥度约2%的钱刀扩孔后每个孔的较大的一端的直径不小于4.5 mm且不大5. 5 mm.。钻好的两孔完全贯穿试样,但如果试样是大管子,则孔仅贯穿一个管壁,并在孔的整个长度上用铰刀扩孔。在钻孔和扩孔时,孔周围的材料不应有任何形式的损坏,如劈裂、破碎或碳化。用作电极的锥形销的锥度为(2.0土0. 2)%,并将锥形销压人<但不要锤人>两孔,以使它们能与试样紧密配合,并突出试样每一面至少2 mm(见图7a)和7b))这类电极仅适用于试验厚度至少为1. 5 mm的硬质材料。 平行圆柱形电极对厚度大于15mm的具有高电气强度的试样进行试验时,将试样切成100mm×50 mm,并如图8 所示钻两个孔,每个孔的直径比圆柱形电极的直径大,但差值不大于0.I mm.圆柱形电极直径为(6.0士0.1)mm,并有半球形端部,每个孔的底部是半球形以便与电极端配合,使得电极端部和孔的底部之间间隙在任何点都不超过0.05 mm。如果在材料规范中没有另外规定,则两孔沿其长度的侧面相距应是(10士1)mm,每孔应延伸到离相对的表面(2.25±0. 25) mm以内。两种任选形式的通风电极如回8所示.当使用带小槽的电极时,这些小槽位置应与电极间的间距正好相反。试样除了上述各条中己组述过的有关试样的情况外,通常还要注意下面儿点。制各固体材料试样时,应注意与电极接触的试样两表面要平行,而且应尽可能平整光滑。对于垂直于材料表面的试验,要求试样有足够大的面权以防止试验过程中发生闪络。对于垂直于材料表面的试验,不同厚度的试样其结果不能直接相比(见第4章)。 两电极间距离用来计算电气强度的两电植间距离值应为下列之一(按被试材料的规定)a) 标称厚度或两电极间距离(除非另有规定,一般均采用此值);b) 对于平行于表面的试验,两电极间的距离;c) 在每个试样上击穿点附近直接测悍的厚度或两电极间的距离。试验前的条件处理绝缘材料的电气强度随温度和水份含量而变化, 若被试材料已有规定,则应遵循此规定。 否则,除非另有商定条件,试样应在温度为(23土2)℃,相对湿度为(50士5)%条件下扯理不少于24 h。周围媒质材料应在为防止闪络而选取的周围媒质中试验。在大多数情况下,符合IEC 60296: 2003的变压器油是适用的媒质。对在矿物油中会引起膨胀的材料,此时其他的流体(例如硅油),可能是更合适的。对击穿电压值相对较低的试样,可在空气中试验,此时若要在高温下进行试验时,应注意即使在中等的试验电压下,在电极边缘的放电也会对测试值造成很大影响。如果试图在另一种媒质中时某种材料的性能进行试验评定,则可以应用这种媒质。所选取的媒质应对被试材料的危害影响是小的。周围媒质对试验结果可能有很大影响,特别是对易暖收的材料,如纸租纸板,因此必须在试样制备程序中确定全部的必要步骤(例如干燥和浸渍),以及试验过程中周围媒质的状态。必须有足够的时间让试样和电极达到所要求的温度,但有些材料会因长期处于高温而受到影响。在高温空气中的试验在高温空气中做试验,可在任何设计合理的烘箱中进行,烘箱要有足够大的体棋来容纳试样和电极,使官们在试验时不发生闪络。烘箱应装有空气循环装置使试样周围的温度在规定温度的土2℃内且应大体上保持均匀,把温度计、热电偶或其他测量温度的装置尽可能放在实验点附近测量温度在班体申的试验当试验要在绝缘液体中进行时,除非其他液体更合适外,一般应使用符合IEC 60296: 2003的变庄器油。 必须保证穰体有足够的电气强度以避免网络- 在具有比变压器油更高的的相对电容率的液体中 试验的试样,会出现比在变压器袖中试验时更高的电气强度。 降低变压器油或其他掖体电气强度的杂 质,也可能会增加试样上测得的电气强度。高温下的试验可以在烘箱内的盛液容器中进行<见7. 1),也可在绝缘油作为竟也传递介质的恒温控制的油播中进行。在这种情况下,应采用合适的液体循环措施,以便试样周围的温度大致均匀,并保持在规定温度的±2℃内。电气设备电源用一个可变低压正弦电源供给一个升压变压器来获得试验电压。 变压器及其电源和它的调节装置应具有如下特性。 在回路中有试样的情况下,对等于和小于试样击穿电压的所有电压,试验电压的峰值与有效值(r, m. s)之比为根号2(1土5%)即(1. 34~1. 48)。电源的容量应足够大,使之在发生击穿之前均能符合8. 1. 1 要求,对于大多数材料,在使用推荐的电极的情况下,通常40 mA的输出电流容量巳足够。对于大多数试验来说,电源容量范围为;对于10kV及以下的小电容试样的试验,其容量为0.5kVA;对于试验电压为100 kV以下者则为5 kVA。可变低压电源调节装置应能使试验电压平滑、均匀地变化,无过冲现象。当用一个自耦调压器按第10章施加电压时,所产生的递增的增量不应超过预期击穿电压的2%。对短时试验或快速升压试验,zui好使用马达驱动调节装置。为了保护电源不致损坏,应装有一个装置使在试样击穿的几个周期内切断电源。这个装置可以由一个接在高压回路中的电流敏感元件组成。为了限制在击穿时由电流或电压冲击引起电极的损伤,要求将一个具有合适值的电阻器与电极串联。电阻值的大小应取决于电极所允许的损伤程度。注:应用阻值很高的电阻器可能会导致测得的击穿电压比应用阻值低的电阻器测得的击穿电压值高。电压测量 按等效有效值记录电压值。 较好的方法是用一块峰值电压表并将其读数除以根号2。 电压测量回路的总误差应不超过测得值的5%,该误差包括了由于电压表的响应时间所引起的误差。 在所用的任何升压速率下,该响应时间引起的误差应不大于击穿电压的1%。果用符合8. 2.1要求的电压表来测量施加到电极上的电压。好将它直接接到电极上,也可通过分压器或电压互感器接到电极上。 如果使用升压变压器的测量线圈来测量电压,则施加到电极上的 电压的指示正确度应不受升压变压器负载和串联电阻器的影响。希望在击穿后能在电压表上保留大试验电庄的读数值,从而正确地读出并记录击穿电压,但指示嚣应对在击穿时发生的瞬变现象不敏感。

选型与使用注意事项

1. 选型要点

测试电压范围:根据被测对象的额定电压选择合适档位(如低压设备选用500V,高压设备选用2500V)。

测量范围:确保仪器覆盖所需的电阻测量范围(如0.1 MΩ至10 TΩ)。

功能需求:选择支持极化指数(PI)、吸收比(DAR)、自动放电等功能的型号。

便携性:现场测试需选择轻便、耐用的手持式设备。

标准符合性:确保仪器符合目标行业的标准(如IEC 61557、GB/T 3048等)。

2. 使用注意事项

测试前准备:确保被测设备断电并充分放电,避免残余电荷影响测试结果。

环境条件:湿度、温度可能影响测试结果,建议在标准条件下操作。

定期校准:通过第三方机构对仪器进行年度校准,确保测量精度。

安全操:测试时避免接触高压部分,防止触电事故。

电压击穿试验仪终止电流定义解析

一、基本定义

‌终止电流‌
指试验过程中设定的电流阈值(通常为毫安级),当被测材料发生击穿时,回路电流骤增至该阈值,触发设备自动停止升压并记录击穿电压值。未击穿状态下,材料的漏电流通常为微安级(1-10μA),击穿瞬间电流会跃升1-2个数量级(如≥1mA),形成判定击穿的明确信号。

二、功能与作用

‌核心判定依据‌
通过监测电流突变识别击穿事件,避免仅依赖电压波动可能导致的误判。

‌安全保护机制‌
触发终止试验后,设备自动切断高压输出并启动放电程序,防止过流损坏传感器或引发电弧危险。

三、参数设置规范

00001. ‌典型阈值范围‌

· 通用型试验仪默认值为5mA,可根据材料导电特性调整至1-20mA。

· 高灵敏度测试场景(如薄膜材料)可降低至0.5mA以提高检测精度。

00002. ‌设置依据‌

材料类型:导电性较强的材料需设定更高的终止电流阈值以避免误触发。测试标准:遵循IEC 60243、GB/T 1408等标准中对电流阈值的具体要求。

四、技术实现

00001. ‌监测技术‌
采用高精度微安表或霍尔传感器实时采集电流信号,结合数字滤波技术消除环境干扰。

00002. ‌联动控制逻辑‌
电流信号经AD转换后输入控制器,通过硬件比较电路与软件算法双重验证,确保判定响应时间<50ms。

附:终止电流与其他参数的关联性

参数

关联机制

典型示例

升压速率

高速升压需匹配更高终止电流

1kV/s对应5mA阈值1

电极形态

电极易引发局部放电,需降低阈值

球-板电极设定3m

环境湿度

湿度>70%时需提高阈值防误判

阈值调整为8m

通过合理设置终止电流参数,可显著提升击穿电压测试的准确性与安全性

电压击穿试验仪应用领域与重要性

一、电压击穿试验仪应用领域

‌电力行业‌

用于高压输电线路、变压器、开关设备的绝缘性能测试,确保设备在高电压环境下的长期稳定运行。

应用于变电站、电网设备的安全性评估,防止因绝缘失效导致的电力系统故障。

‌电子制造业‌

测试电路板、半导体器件等电子产品的绝缘层性能,防止因绝缘缺陷引发的短路或安全事故。评估电容器、电缆等电子元件的耐压能力,保障产品的可靠性和使用寿命。

‌新材料研发‌

分析新型绝缘材料的介电强度和耐压极限,推动高性能材料(如纳米复合材料、高温超导材料)的开发。通过加速老化试验模拟极端环境,研究材料在湿热、机械应力等条件下的绝缘性能退化规律。

‌其他工业领域‌

‌航空航天‌:验证飞机线缆、航天器绝缘部件的电气安全性。

‌汽车电子‌:测试车载电池、电机绝缘系统的可靠性,适应新能源汽车高压化趋势。

‌通讯设备‌:评估5G基站、光纤设备的耐电压性能,确保信号传输稳定性。

二、电压击穿试验仪重要性

‌保障电气安全的核心工具‌

通过精确测定击穿电压,识别绝缘材料的性能边界,避免设备因过压引发火灾、爆炸等事故。

在电力设备制造和检修环节中,作为质量控制的“后防线”,减少因绝缘失效导致的经济损失。

‌推动技术标准化与合规性‌

测试数据是产品符合IEC 60243、GB/T 1408等国际/国内标准的关键依据,直接影响市场准入资格。

为电气设备的设计优化提供量化支撑,例如通过击穿电压值确定绝缘层厚度或材料选型。

‌支持科研与产业升级‌

助力新型绝缘材料的研发,推动电力设备小型化、高效化发展(如超高压变压器、紧凑型开关柜)。

通过长期性能监测数据,建立材料老化模型,为设备寿命预测和预防性维护提供科学依据。

附:典型应用场景与技术需求

领域

测试对象

技术指标要求

电力设备

变压器绝缘纸板

击穿电压≥40kV/mm17

半导体

芯片封装环氧树脂

漏电流≤1μA@10kV

新能源车

动力电池隔膜

耐压强度≥200V/μm

航空航天

耐高温电缆护套

击穿电压稳定性±2%

电压击穿试验仪通过多领域渗透和技术迭代,已成为保障电气安全、驱动产业创新的关键基础设施

电压击穿试验仪操作流程

一、设备准备与安全确认

‌环境与电源检查‌

确保实验室温度控制在15-30℃,湿度<70%,避免环境因素干扰测试精度。

连接电源线(AC 220V±10%),检查接地电阻<4Ω,使用接地棒深度>1.5米。

‌开机与自检‌

按下电源键启动设备,等待30秒完成系统自检,确认触摸屏显示“System Ready”状态。

校准电压示值误差(≤±1%),使用标准分压器验证设备精度。

二、试样安装与参数设置

‌试样处理与安装‌

裁剪试样至标准尺寸(如100×100mm),表面清洁后使用无水乙醇擦拭,去除油污与灰尘。

将试样平铺于绝缘平台,调节上下电极间距至预设值(如1mm),使用千分尺校准精度达±0.01mm。

‌参数配置‌

通过触摸屏选择测试模式:‌连续升压‌:从零开始匀速升压至击穿;

‌步进升压‌:分段施加电压并保持时间。

设置升压速率(0.1-5kV/s)、击穿电流阈值(默认5mA)及初始电压(建议预期击穿值的30%)。

三、测试执行与数据记录

‌启动测试‌

关闭防护门,按下启动键后设备自动升压,实时显示电压-电流曲线。当电流跃升至设定阈值(如≥5mA)或检测到电弧放电时,设备自动停止升压并记录击穿电压值。

‌异常处理‌

若测试中触发过流保护(硬件/软件双重保护),立即切断高压并启动放电程序,待残余电荷释放完毕后方可操作。

四、数据管理与维护

‌结果输出‌

查看主界面历史数据,导出CSV/PDF格式报告或通过热敏打印机输出纸质记录。

报告中需包含环境参数(温湿度)、升压速率、击穿时间及设备序列号等追溯信息。

‌设备维护‌

定期清洁电极表面氧化层,使用砂纸打磨后涂抹绝缘油脂。

每月进行空载试验验证升压稳定性,确保PID控制算法精度≤±2%。

安全注意事项

‌防护措施‌

测试过程中严禁开启防护门,待高压指示灯熄灭且调压器归零后再处理试样。

操作人员需穿戴绝缘手套及护目镜,避免电弧伤害。

‌紧急处理‌

若设备异常报警(如过流、短路),立即按下急停按钮并断开总电源。

通过标准化操作流程与多重安全防护机制,可确保测试结果的准确性与操作人员的安全性

电压击穿试验后试样处理流程

一、安全防护与设备复位

‌断电与放电‌

试验结束后立即关闭高压输出,按下停止键或急停按钮,切断总电源。

等待设备自动放电(约30-60秒),确认高压指示灯熄灭、调压器归零后方可开启防护门。

‌残余电荷释放‌

使用接地棒触碰试样表面,手动释放可能残留的电荷,避免操作人员触电风险。

二、试样检查与记录

‌击穿痕迹分析‌

观察试样表面是否形成贯穿性孔洞、碳化路径或裂纹,使用放大镜或显微镜记录击穿点形态。

测量击穿点直径(精度达0.1mm),标注击穿位置与电极接触区域的距离。

‌异常状态标记‌

若试样未完全击穿但出现局部放电痕迹(如焦斑),需单独分类并标注“非完全击穿”。

三、试样清洁与存储

‌表面清洁‌

用无水乙醇或丙酮擦拭试样表面,清除电极接触区域的氧化残留物或碳化物。

对多次测试的试样,需清洁后烘干(温度≤60℃,时间≥2小时)以恢复初始状态。

‌分类存储‌

已击穿试样单独存放于防静电袋,标注测试参数(如击穿电压、环境温湿度)。

未击穿试样可重复使用,但需记录累计测试次数以避免材料疲劳影响数据准确性。

四、数据整理与设备维护

‌数据导出‌

从设备导出击穿电压、电流曲线及击穿时间等数据,保存为CSV格式并备份。

报告中需包含试样击穿前后的对比照片及环境参数(温度、湿度)。

00001. 

‌电极与设备维护‌

清洁上下电极表面,使用800目砂纸打磨氧化层后涂抹硅脂防锈。

检查绝缘平台是否有击穿残留物,必要时用异丙醇清洗并干燥。

 

安全注意事项

‌操作规范‌

严禁在未放电或高压未归零时接触试样,穿戴绝缘手套与护目镜操作。

处理多孔或吸湿性材料时,需延长放电时间(≥5分钟)。

通过规范化的试样处理流程,可确保试验数据的可追溯性并延长设备使用寿命

ASTM D149电压击穿/介电强度/耐压试验仪

陶瓷材料击穿强度试验仪

陶瓷材料击穿电压试验仪

陶瓷材料电气强度试验仪

漆膜介电强度试验仪

漆膜击穿电压试验仪

漆膜电气强度试验仪

塑料介电强度试验仪

塑料击穿电压试验仪

塑料电气强度试验仪

微信图片_20240523094710.jpg

相关产品

厂商推荐产品

在线留言

换一张?
取消