2025-01-21 09:30:22分布式光纤传感技术
分布式光纤传感技术是一种利用光纤作为传感元件,连续测量光纤沿线上各点物理量(如温度、应变等)的技术。它通过将光纤铺设于待测区域,利用光在光纤中的传输特性变化来感知外界信息。该技术具有测量范围广、空间分辨率高、可连续监测等优点,广泛应用于结构健康监测、周界安防、油气管道泄漏检测等领域。通过实时监测物理量的分布和变化,为工程安全提供重要数据支持。

资源:3084个    浏览:103展开

分布式光纤传感技术相关内容

产品名称

所在地

价格

供应商

咨询

分布式光纤传感技术的管道泄漏监测系统详细介绍
国内 浙江
¥10000
杭州迈煌科技有限公司

售全国

我要询价 联系方式
分布式光纤振动传感相干接收模块
国内 上海
面议
青岛森泉光电有限公司

售全国

我要询价 联系方式
DiTemp光纤分布式温度监测系统
国内 香港
面议
欧美大地仪器设备中国有限公司

售全国

我要询价 联系方式
OSD-1分布式光纤温度和应变监测系统
国内 香港
面议
欧美大地仪器设备中国有限公司

售全国

我要询价 联系方式
1064nm 光纤耦合增益开关分布式反馈激光二极管组件(皮秒) HI-1060光纤
国外 欧洲
面议
筱晓(上海)光子技术有限公司

售全国

我要询价 联系方式
2025-05-21 11:15:28半导体激光器怎么导入光纤
半导体激光器怎么导入光纤:技术要点与应用分析 半导体激光器作为现代光通信、激光加工以及医疗设备中不可或缺的核心组件,其光输出特性与光纤的匹配问题成为影响系统性能的关键因素之一。如何高效地将半导体激光器的光束导入光纤,确保光能的大化传输,并减少损耗,是许多技术人员和工程师研究的。本文将深入探讨半导体激光器导入光纤的关键技术,分析光耦合的原理、光纤的选择以及在不同应用中的实际挑战与解决方案。 半导体激光器与光纤的光耦合原理 在进行光耦合时,首先要理解半导体激光器的输出光束和光纤的光学特性。半导体激光器输出的光束具有较高的发散角,而光纤通常要求光束进入的角度与光纤的核心区域完全对接。为了实现高效的耦合,必须考虑到两个方面:光束的聚焦与光纤的接收能力。 1. 光束的聚焦 半导体激光器输出的光束通常呈现一定的发散度,因此需要使用光学透镜系统进行聚焦。这些透镜可以有效地将激光器输出的光束聚焦到光纤的输入端口,从而减少光能在传输过程中的损耗。常见的聚焦方式有单透镜聚焦和复合透镜系统聚焦两种方式,前者结构简单且成本较低,后者则适用于更高精度的光纤耦合。 2. 光纤的选择 光纤的选择同样是影响光耦合效率的重要因素。主要有单模光纤和多模光纤两种类型。单模光纤能够提供更低的损耗和更高的传输质量,适用于长距离光通信。而多模光纤则适合短距离应用,其成本较低,且能够支持较大的光斑面积。选择合适的光纤不仅影响耦合效率,也决定了系统的传输质量与成本。 光纤与半导体激光器的接驳技术 对于半导体激光器与光纤的接驳,常见的技术方法包括自由空间耦合和微型光学模块耦合。 1. 自由空间耦合 自由空间耦合技术采用透镜或反射镜将激光器输出的光束导入光纤。该方法简单,且不需要复杂的光学对准,但是要求激光器和光纤之间的空间距离和对准精度较高,稍有偏差就可能导致光损失。 2. 微型光学模块耦合 随着光纤通信技术的不断发展,微型光学模块成为了一种更精确的光耦合技术。这些模块内置了精密的光学元件,可以更地将激光输出端和光纤接头对准,减小了光损耗并提高了传输效率。 半导体激光器耦合光纤的应用 在实际应用中,半导体激光器导入光纤的技术广泛应用于光通信、医疗激光、激光显示和精密制造等领域。尤其在光纤通信中,半导体激光器与光纤的高效耦合直接关系到信号的质量和传输距离;而在激光加工和医疗领域,精确的光束传输可以保证加工精度和治果。 总结 半导体激光器与光纤的光耦合技术是光学系统设计中的一项关键技术,影响着系统的光效、稳定性与成本。在实际操作中,合理的光纤选择、精确的光束聚焦技术以及高效的光耦合方式是提高传输效率的关键因素。随着光通信和激光技术的不断进步,未来将会出现更多创新的解决方案,进一步推动相关行业的发展与应用。
190人看过
2025-05-22 14:15:21固体激光器可以光纤传输吗
固体激光器可以光纤传输吗?这个问题常常困扰着激光技术的研究人员和工程师。随着光纤通信技术和激光器技术的不断发展,越来越多的激光器种类被应用于光纤系统中。固体激光器作为一种常见的激光源,其是否能够与光纤结合并进行高效的光纤传输,成为了技术发展的一个重要课题。本文将深入探讨固体激光器与光纤传输的关系,分析其技术可行性、挑战以及实际应用中的解决方案。 固体激光器的工作原理基于固态材料的激发和光放大过程,常见的固体激光器包括掺镱激光器、掺铒激光器等。与传统的气体激光器和半导体激光器相比,固体激光器通常具有较高的输出功率和较长的激光波长,适用于多种工业应用。固体激光器是否可以有效地与光纤结合进行传输,涉及到多个技术因素。 固体激光器的输出光通常是通过光学系统进行耦合到光纤中的。这一过程要求激光器的输出光斑与光纤的光学模式匹配。由于固体激光器输出的光斑形状和光纤的接收模式不同,因此在进行光纤传输时,常常需要使用透镜、反射镜等光学元件来实现高效耦合。固体激光器输出的光功率较大,这就要求光纤的传输损耗要尽量低,以确保信号在光纤中能够稳定传输。 固体激光器与光纤的耦合和传输也面临一些挑战。例如,激光器的输出光通常是空间非高斯模式,而光纤传输要求的是高斯模式光波。这就需要在设计上进行优化,以实现较高的传输效率。光纤传输的波长范围有限,固体激光器的波长选择必须适应光纤的工作波长窗口,才能确保传输效果。 尽管如此,近年来,随着光纤技术的不断进步和固体激光器设计的创新,固体激光器与光纤的高效耦合和长距离传输已经得到了实现。例如,利用特殊设计的光纤,如大模式光纤(MMF)和特种光纤,可以更好地适配固体激光器的输出光斑,从而提高传输效率和稳定性。光纤激光器和激光光纤耦合器的不断发展也为固体激光器光纤传输提供了新的解决方案。 总结来说,固体激光器在与光纤的结合与传输方面,虽然存在一定的技术挑战,但通过合适的耦合技术和光纤设计,已经能够实现高效、稳定的光纤传输。随着相关技术的不断进步,固体激光器与光纤的结合将会在许多领域得到广泛应用,推动激光通信、传感技术等领域的创新和发展。
155人看过
2021-09-22 11:23:53RT1 分布式太阳辐射传感器技术参数!
通过RT1坚固的外壳,可以非常方便的将RT1和配套电子设备固定在PV板的边角上。它包含了一个传感器,可以可靠地测量光伏阵列中入射面的太阳辐射。温度传感器可以非常方便的固定在组件背板上。RT1是监测商业屋顶光伏安装效率的解决方案。RT1的优势Benefits RT1:转为商业屋顶光伏装置而设置安装在太阳能板的边角上智能数字传感器测量辐照度和组件背板温度5年不需要重新校准技术参数辐照度0 ~ 2000 W/m2精度/分辨率1 W/m2光谱范围400 to 1100 nm不稳定性 (每年变化)< 1 %非线性误差(0 ~ 1000 W/m2)< 1 %组件温度传感器-20 ~ +100 °C, ± 1 °C校准使用带跟踪器的参考辐射表信号输出1 - RS-485 Modbus®2 - PV 组件温度传感器供电范围5 to 30 VDCZUIDA功耗60 mW工作温度-40 ~ +80 °C建议校准时间间隔5 years
285人看过
2022-02-16 17:31:31光纤记录详解,一文带你详细了解光纤记录实验!
一、光纤记录工作原理人类的大脑拥有约900亿个神经元,神经元之间通过突触相互连接形成了复杂的神经网络,并由此产生各种复杂的功能。大脑能够合成和释放上百种神经递质,神经信号通过突触释放的神经递质从而在神经元之间进行传递(图1)。图1当神经兴奋传导到突触末端时,会刺激突触上钙离子通道打开促使钙离子大量内流,胞内钙离子浓度瞬时上升,驱动突触小泡将神经递质释放到突触间隙中,释放出的神经递质随即与突触后膜上的受体结合,将递质信号传递给下一个神经元,从而进行信息的逐级传递(图2)。这些神经元以复杂的通路投射到多个脑区,产生了学习认知、情感、控制、动机、奖励等丰富的功能。光纤记录系统则可以通过检测钙离子和神经递质的荧光变化程度来表征群体神经元的活动情况。图2那么光纤记录是如何检测神经活动的呢?以钙离子荧光信号检测为例,光纤记录系统的技术原理是借助钙离子浓度变化与神经元活动之间的严格对应关系,利用特殊的荧光染料或者蛋白质荧光探针,将神经元中钙离子的浓度通过荧光强度表现出来,并被光纤记录系统捕捉,从而达到检测神经元活动的目的。在神经系统中,静息状态时神经元胞内钙离子浓度为50-100nM,而在神经元兴奋时胞内钙离子浓度能上升10-100倍,因此我们可以通过注射钙离子基因编码指示剂(Calcium indicator,如GCaMPs、RCaMPs等)来标记钙离子。钙离子指示剂带有荧光蛋白(如GFP、RFP等)及其变异体的蛋白质,可与钙调蛋白(CaM)和肌球蛋白轻链激酶M13域结合(图3左)。当神经活动增强时钙离子通道打开,大量钙离子内流并与CaM结合,导致M13和CaM结构域相互作用,引发cpEGFP结构重排,从而增强绿色荧光信号(图3 右)。因此我们可以通过检测钙信号的变化来表征神经元的活动,进而研究神经元活动与动物行为的相关性,探究复杂行为背后的调控机制。图3(Marisela Morales, et al. Neuron, 2020)图4:VTA-VGluT2神经元编码先天逃避反应光纤记录检测神经递质信号的原理与上述方法相同,把cpEGFP嵌入特定的神经递质受体,受体与神经递质结合后会引发受体构象改变并发出荧光信号(图5)。通过病毒注射、转染等技术手段,可以将这种可遗传编码的探针表达在细胞或小鼠脑部,借助成像技术,观察神经递质浓度的实时变化。图5(Yulong Li, et al. Cell, 2018)图6:条件反射实验中伏隔核Nac脑区的DA释放二、光纤记录实验方法在光纤记录实验中,首先要选择合适的荧光病毒。荧光染料或指示剂是通过病毒载体转入目标脑区,常用载体为AAV病毒。根据实验的不同,需要选择特异启动子或者Cre-FloxP系统来特异标记目标神经元,无特异性的GCaMPs表达虽然可以观测群体神经元活动但无神经元特异性,光纤记录的作用在于观测特异类型神经元群体的活动。实验流程:1、在目标脑区注射钙荧光病毒,并在注射位点埋植光纤插针,用于收集荧光;图7:病毒注射与陶瓷插针埋植2、待2-3周钙荧光病毒表达后,连接光纤,使用光纤记录系统采集动物在行为学实验中大脑的钙荧光信号;图8:病毒表达3、通过分析软件处理钙荧光信号数据,并结合行为学视频对动物的行为进行分析。图9:光纤记录结合高架十字迷宫实验三、光纤记录数据分析以瑞沃德R820三色光纤记录系统记录的数据为例。1、数据预处理。R820三色光纤记录系统软件集信号采集与数据分析于一体,在数据分析中,数据预处理过程包含平滑处理,基线矫正,运动矫正等功能。平滑处理可以将数据中的过多杂信号去除,最大限度的突出目标peak。基线矫正多数针对的是荧光信号因长时间记录导致漂白信号逐步下降,或者光纤的自发荧光在长期记录下逐步被漂白基线逐步下降等情况。此情形的数据因为整体呈现下降趋势,不利于后续数据作图分析,所以需要进行基线矫正。运动矫正用于采用410nm对照通道的数据,410nm数据可以用于反应背景噪音信号,运动矫正即将410nm数据与470nm数据进行拟合,通过算法从470数据中去除410nm数据的波动,得到真实的荧光数据。图10:光纤记录数据预处理2. 将荧光数据与动物行为数据同步对比,选择事件标记或者增加事件标记,事件相关信号分析作图。图11:事件分析3. 将不同组的数据进行组间对比,即可分析不同处理因素下荧光数据的差异。此外,还可结合行为学视频同步分析动物的运动轨迹。图12:不同数据组间分析通过以上步骤,原始的荧光数据就可以直接出图啦。光纤记录实验的工作原理,实验方法以及数据分析已经全部讲完啦….想体验R820三色多通道光纤记录系统识别下方二维码,即可免费试 用让实验信号更强更准
1582人看过
2022-11-24 09:30:59光纤记录实验过程中需要全程避光吗?
195人看过
489项行业标准
国家标准物质研究中心
束半值层仪
测试校准规范
应变监测方法
科研课题指南
强对流天气
电能表IEC标准
国际建议R46
上海新国际
智能化标准体系
分布式光纤传感技术
制定管理办法
射频连接器
北斗地面基站
天线近场测试系统
干扰素之父
粤港澳科技合作
高性能种子
配套海水淡化系统
移动通信基站
IEC国际标准
全国科技经费
实验室间比对
工程技术研究中心
空间X射线通信
中阶梯光栅
太赫兹成像技术
地面精细试验观测区
汽车底盘测功机
水电机组转子
内河接收设施
动态评价规范
大型实验室仪器
放射性惰性气体
原子氢气谱线