- 2025-01-10 10:50:46脂肪酸含量测定
- 脂肪酸含量测定是通过化学或仪器分析方法,对样品中的脂肪酸进行定量检测的过程。常用方法包括气相色谱法、液相色谱法等,能精确测定脂肪酸种类及含量,对食品营养分析、油脂质量控制、生物医学研究等领域具有重要意义。通过测定,可了解样品脂肪酸构成,为健康评估、产品研发等提供数据支持。
资源:15204个 浏览:39次展开
脂肪酸含量测定相关内容
脂肪酸含量测定文章
-
- 低场核磁共振技术:食用油脂肪酸含量测定的高效解决方案
- 低场核磁共振技术的优势在于其快速、无损、精确的检测能力,以及对样品无损耗和样品制备简单的特点。它能够提供食用油中不同脂肪酸的信号,从而区分和定量各种脂肪酸的含量。此外,低场核磁共振技术还可以用于研究食
-
- 花生脂肪酸含量快速检测:低场核磁共振技术的优势与应用
- 低场核磁共振技术以其快速、无损、操作简便的特点,在花生种子脂肪酸含量测定中展现出巨大的应用潜力。
-
- 橄榄油中脂肪酸乙酯含量的测定解决方案一——SN/T 5651-2024 GC法
- 橄榄油营养成分丰富、保健功能突出,被公认为绿色保健食用油,具有预防心脑血管疾病和糖尿病以及防癌和抗衰老等功能
-
- 橄榄油中脂肪酸乙酯含量的测定解决方案二——GB/T 44966-2024 GC-MS法
- 橄榄油营养成分丰富、保健功能突出,被公认为绿色保健食用油,具有预防心脑血管疾病和糖尿病,以及防癌和抗衰老等功
脂肪酸含量测定产品
产品名称
所在地
价格
供应商
咨询
脂肪酸含量测定问答
- 2024-12-18 16:35:43 微量水分测定仪使用哪些关键工具测定水分含量?
- 微量水分测定仪作为一种高精度的分析仪器,广泛应用于科研、制药、食品、化工等行业,具有测定样品中微量水分含量的优异性能。通过物理或化学原理,它能够准确测量各种物质中的水分含量,尤其在那些水分含量极低的样品中,显示出其独特的优势。微量水分测定仪的工作原理微量水分测定仪的工作原理通常基于卡尔·费休法(Karl Fischer Titration)或红外线水分测定技术。卡尔·费休法是目前常用的一种水分测定方法,尤其适用于低水分含量样品的分析。微量水分测定仪的使用步骤使用微量水分测定仪进行水分测定时,操作人员需要按照以下步骤进行:样品准备:需将待测样品进行充分的准备。样品的颗粒大小、形态对测量结果有一定影响,因此应尽量保证样品的均匀性。仪器校准:为确保测试的准确性,在进行样品测量前,需对微量水分测定仪进行校准。一般使用标准水分样品进行校准,确保仪器读数的。测量过程:将样品加入测定仪的测量区域,启动仪器开始测试。在卡尔·费休法中,化学反应会实时进行,仪器会自动记录反应消耗的试剂量结果分析:测试结束后,仪器会自动输出水分含量的结果。操作人员需根据仪器显示的数值,进一步分析和处理样品数据。数据记录与报告生成:通过连接计算机,测试结果可以直接输出为报告,便于存档和进一步分析。微量水分测定仪的应用领域微量水分测定仪因其高精度和快速分析的特性,已在多个领域得到广泛应用。以下是几个主要应用领域:制药行业:在药品生产中,水分含量的控制对药品的稳定性、效果以及保质期至关重要。食品行业:食品的水分含量直接影响其口感、保存期限以及营养成分。在生产过程中,微量水分测定仪能够帮助食品企业实时监控水分含量,保证食品品质的稳定性。化工行业:许多化工产品的性能受到水分含量的显著影响,特别是对于高精度化工原料的要求。微量水分测定仪的使用,能帮助化工企业控制原料和成品的水分含量。环境科学与气象:微量水分测定仪在环境监测和气象学中的应用,能够分析土壤、空气和水体的湿度,帮助科学家更好地研究生态环境变化。微量水分测定仪的维护与保养为了确保微量水分测定仪的长期稳定运行,定期的维护与保养是非常必要的。需定期清洁仪器内部的试剂池和样品室,防止化学试剂的残留影响后续测量。仪器的电池、传感器等关键部件也需要定期检查和更换,以确保其准确性和可靠性。
182人看过
- 2023-03-22 15:34:17电线电缆氟含量测定装置
- 适用范围:依据GB/T12706-2008《额定电压1kN(Um=1.2kN)到35 kV(Um=40.5kV),挤包绝缘电力电缆及附件》、IEC60684-2:2003标准要求。适于检测电力电缆氟含量试验设备。对应标准:GB/T12706-2008IEC60684-2:2003主要技术参数:u 可随意选择pF、mol/L、mg/L和ppm四种单位进行校准和测量,并进行切换;u 自行设定二点氟离子浓度标准溶液,自动校准,直接测出样品的氟离子浓度;u 智能搅拌器可设定固定不变的搅拌速度,方便可靠;u 具有自动校准、自动温度补偿、数据储存、定时测量、RS232输出、时钟显示、功能设置和自诊断信息等智能化功能;u 配置: 离子计(分光光度计);移液管;试剂
206人看过
- 2023-06-05 09:39:20傅立叶变换红外光谱仪测定粉尘中游离二氧化硅含量
- 关键词:红外光谱仪 定量检测 游离二氧化硅 在电力、煤炭等行业生产环境中,粉尘中游离二氧化硅含量较高,粉尘的分散度也比较高,即多为呼吸性粉尘,因此对作业人员的危害较大,主要包括鼻炎、咽炎、气管炎、支气管炎等呼吸系统疾病。因此,加强对粉尘中游离二氧化硅含量的检测是一件非常重要和紧迫的工作。以往检测均采用“焦磷酸重量法”,该方法存在操作步骤复杂、使用试剂种类繁多、检测周期长、准确性差、试验室条件要求苛刻等一系列问题,难以满足现场批量检测的要求。为了提高检测的准确性,实现批量检测的目的,可选用FTIR920型傅立叶变换红外光谱仪来检测粉尘中游离二氧化硅含量。检测原理:α-石英在红外光谱中于 12.5μm(800cm-1)、12.8μm(780cm-1)及 14.4(694cm-1)μm处出现特异性强的吸收带,在一定范围内,其吸光度值与α-石英质量成线性关系。通过测量吸光度,进行定量测定。仪器配置:制样准备:瓷坩埚和坩埚钳;箱式电阻炉或低温灰化炉;十万分之一天平;200目过滤筛;滤纸、称量纸 若干;无水乙醇;手套、脱脂棉、小药勺、玻璃取样瓶;游离二氧化硅标准品(纯度高于95%);采集的粉尘样品。样品的采集:根据测定目的,样品的采集方法参见 GBZ 159 和 GBZ/T 192.2 或 GBZ/T 192.1,滤膜上采集的粉尘量大于 0.1mg 时,可直接用于本法测定游离二氧化硅含量。测定:1、样品处理准确称量采有粉尘的滤膜上粉尘的质量(G)。然后将受尘面向内对折 3 次,放在瓷坩埚内,置于低温灰化炉或电阻炉(小于 600℃)内灰化,冷却后,放入干燥器内待用。称取 250mg 溴化钾和灰化后的粉尘样品一起放入玛瑙乳钵中研磨混匀后,连同压片模具一起放入干燥箱(110℃±5℃)中10min。将干燥后的混合样品置于压片模具中,加压25MPa,持续 3min,制备出的锭片作为测定样品。同时,取空白滤膜一张,同样处理,作为空白对照样品。2、石英标准曲线的绘制 精确称取不同质量的标准α-石英尘(0.01mg ~1.00mg),分别加入250mg 溴化钾,置于玛瑙乳钵中充分研磨均匀,按上述样品制备方法做出透明的锭片。将不同质量的标准石英锭片置于样品室光路中进行扫描,红外软件以 X 轴横坐标记录 1000cm-1~600cm-1 的谱图,在 900cm-1 处校正零点和 100%,以 Y 轴纵坐标表示吸光度。以 800cm-1、780cm-1 及 694cm-1 三处的吸光度值为纵坐标,以石英质量(mg)为横坐标,绘制三条不同波长的α-石英标准曲线,并求出标准曲线的回归方程式。在无干扰的情况下,一般选用 800 cm-1标准曲线进行定量分析。3、样品测定分别将样品锭片与空白对照样品锭片置于样品室光路中进行扫描,记录800cm-1(或 694cm-1)处的吸光度值,重复扫描测定 3 次,测定样品的吸光度均值减去空白对照样品的吸光度均值后,由α-石英标准曲线得样品中游离二氧化硅的质量(m)。计算 按以下公式计算粉尘中游离二氧化硅的含量:SiO2(F)= m/G× 100公式中:SiO2(F)——粉尘中游离二氧化硅(α-石英)的含量,%;m——测得的粉尘样品中游离二氧化硅的质量,mg;G——粉尘样品质量,mg。注意事项1、本法的α-石英检出量为 0.01mg;相对标准差(RSD)为 0.64%~1.41%。2、粉尘粒度大小对测定结果有一定影响,因此,样品和制作标准曲线的石英尘应充分研磨,使其粒度小于 5μm 者占 95%以上,方可进行分析测定。3、灰化温度对煤矿尘样品定量结果有一定影响,若煤尘样品中含有大量高岭土成分,在高于 600℃灰化时发生分解,于 800cm-1 附近产生干扰,如灰化温度小于 600℃时,可消除此干扰带。4、在粉尘中若含有粘土、云母、闪石、长石等成分时,可在 800cm-1 附近产生干扰,则可用 694cm-1 的标准曲线进行定量分析。5、为降低测量的随机误差,实验室温度应控制在 18℃~24℃,相对湿度小于 50%为宜。制备石英标准曲线样品的分析条件应与被测样品的条件完全一致,以减少误差。
278人看过
- 2020-12-15 14:29:33液相色谱测定脂肪酸含量需要注意些什么?
- 液相色谱测定脂肪酸含量需要注意些什么?
395人看过
- 2025-09-16 19:00:20叶绿素含量测定仪是什么
- 本文中心思想是揭示叶绿素含量测定仪在植物研究与生产中的核心作用:通过非破坏性的光学测量实现快速、客观的叶绿素评定,并据此优化栽培管理与科研分析。 叶绿素含量测定仪多基于光学原理,常见分为反射/透射型与比色/分光型。SPAD仪通过测量特定波段对叶绿素的吸收,给出快速的相对含量值,便携且使用简便;分光型仪器则通过多波长分析,能提供更接近含量的数据,适合科研应用。不同类型在灵敏度、适用对象和数据解读上各有侧重。 在实际测量中,操作者将探头放置于叶片表面,避开脉纹与水滴,读取数值。SPAD仪给出0-99范围的数值,需结合校准因子转化为叶绿素含量;分光仪通过多波段分析获得近似含量,数据处理相对复杂但更准确。为确保可比性,需建立标准化的操作流程和校准策略。 叶绿素含量测定仪在农业、温室监测、病害与胁迫诊断、品种筛选等领域具有广泛应用,核心优势在于非破坏性、现场快速获得数据、操作简单及结果可比性高。通过实时监测叶绿素动态,可辅助决策灌溉、施肥与日照管理,提升产量与品质,降低资源浪费。 选购要点包括仪器类型、波长组合、重复性与稳定性、数据导出与接口、以及电源与重量。便携式更适合田间使用,台式更利于实验室高精度分析。建议优先考虑具备自动校准、温湿度补偿与多用户管理的型号,并配备校准板与标准叶片库。日常维护应包括定期清洁探头、避免强光直照、在规定条件下进行定期校准,以确保长期数据的一致性。 综合而言,叶绿素含量测定仪是植物分析工具体系的重要组成部分,能够显著提升数据驱动的农业决策与科研水平。通过合理选型与规范化应用,企业与研究机构可实现高效、可比的叶绿素检测与分析。
145人看过




