2025-01-21 09:32:41上转换材料
上转换材料是一种特殊的光学材料,能够将长波长的低能量光子转换为短波长的高能量光子,实现光子的上转换过程。这种材料在激光、显示、生物医学等领域有广泛应用。通过掺杂不同的稀土离子,可以调控上转换材料的发光性能和颜色。其发光效率高、稳定性好,是光学材料研究中的热点之一。

资源:13231个    浏览:15展开

上转换材料相关内容

产品名称

所在地

价格

供应商

咨询

上转换荧光寿命测试仪
国内 天津
面议
天津东方科捷科技有限公司

售全国

我要询价 联系方式
油溶性上转换纳米颗粒
国内 上海
面议
阿拉丁试剂(上海)有限公司

售全国

我要询价 联系方式
油溶性上转换纳米颗粒
国内 上海
面议
阿拉丁试剂(上海)有限公司

售全国

我要询价 联系方式
油溶性上转换纳米颗粒
国内 上海
面议
阿拉丁试剂(上海)有限公司

售全国

我要询价 联系方式
油溶性上转换纳米颗粒
国内 上海
面议
阿拉丁试剂(上海)有限公司

售全国

我要询价 联系方式
2020-02-24 10:17:49上转换材料的荧光光谱分析法
序言上转换发光材料 (Upconversion phosphors material,UPM) 是一类在长波长激发下发射短波长光的材料, 其特点是所吸收的光子能量低于发射的光子能量。 由于使用红外光作为激发光源, 此类材料在防伪标记、 激光探测和立体显示上的用途已经广为人知。 Z近几年来 , 科学家们又发现上转换发光材料有不易发生光漂白和发光强度高等优点 , 用在生物标记中可以大大提高检测灵敏度和线性范围, 因此上转换发光材料的荧光发射光谱是表征其性能的一个重要指标, 具有非常重要意义。与传统典型的荧光发光过程( 只涉及一个基态和一个激发态)不同, 上转换过程需要许多中间态来累积低频的激发光子的能量。 其中主要有三种发光机制: 激发态吸收、 能量转换过程、 光子雪崩。 这些过程均是通过掺杂在晶体颗粒中的激活离子能级连续吸收一个或多个光子来实现的,而那些具有 f 电子和 d 电子的激活离子因具有大量的亚稳能级而被用来上转换发光。然而GX率的上转换过程,只能靠掺杂三价稀土离子实现,因其有较长的亚稳能级寿命。稀土离子的吸收和发射光谱主要来自内层 4f 电子的跃迁。 在外围 5s 和 5p 的电子的屏蔽下,其 4f 电子几乎不与基质发生相互作用, 因此掺杂的稀土离子的吸收和发射光谱与其自由离子相似,显示出极尖锐的峰( 半峰宽约 10-20nm) 。而这同时就对外部激发光源的波长有了很大的限制。激光荧光光谱技术用于化学检测领域具有信噪比高、灵敏度好、检测快速等优点,特别是对于上转换材料的发光检测。商业化的 980nm 激光光源系统恰巧与它的吸收相匹配,为上转换纳米材料提供了理想的激光激发光源。PerkinElmer 是世界上Z主要的荧光分光光度计生产商,也是技术上Zling先的高端仪器供应商。PerkinElmer 公司是SJ采用脉冲氙灯做光源, 具有荧光、 磷光和化学发光三种测量模式, 在磷光和化学发光模式下, 仪器内部激发光源自动关闭, 这样就为 980nm 激光光源的使用提供了便利的条件, 也为上转换纳米材料的荧光发光测试提供了硬件基础, 而其它厂家大多数使用传统的连续氙灯, 不能通过软件将其关闭, 在使用激光光源时, 只能通过遮挡的方式将出光孔堵住; PerkinElmer 公司采用脉冲氙灯光源, 就可以很好的在内部光源与外部激光光源之间进行切换, 当需要使用外部激光光源系统时,只需要通过软件选择激光测定模式即可, 不需要通过其它物理遮挡方式, 来遮挡仪器原有的激发光源, 这是PerkinElmer 公司优于其它公司的重要技术之一。 这种操作不仅延长了原有氙灯的使用寿命, 而且也很好的限制了由于物理遮挡导致的杂散光影响; 另外, 由于采用了灵活的可拆卸的样品架套筒设计, 如图 1 所示, 不仅固定了激光光源的输出端, 使之与样品池垂直, 保证激光光源能够准确的照射到待测样品上而且, 在进行常规荧光测定时, 容易取下, 大大简化了操作的繁琐性。硬件配置主机: LS-55 型荧光分光光度计 ( 图 2)附件: 激光光源及可拆卸样品池套筒(图 1)图 1. 激光光源及可拆卸样品池架套筒图 2. PerkinElmerLS-55 荧光光谱仪样品测试测试条件测试模式: 激光测定模式延迟时间: 0ms扫描范围: 300-700nm扫描速度: 1000nm/min测试结果改变不同条件测试 UCNP 上转换材料得到的荧光发射谱图, 如下图 3 所示。 从图可以看出样品在357nm、473nm、 645nm 有荧光发射峰, 这三个发射峰是 UCNP三个能级的光子发射, 其中在 473nm 处Z强, 且荧光发射峰窄且尖锐, 半峰宽大约 10nm, 测试结果令人满意。图 3. 样品荧光发射谱图结论PerkinElmer 公司的 LS-55 荧光光谱仪连接激光做光源的荧光分析方法能够准确的测试上转换材料的荧光发射峰,测试结果良好, 为上转换材料的发光表征提供了wan美的解决方案。 该方法操作简单, 使用方便, 成本低廉, 能够满足绝大多数样品的测试, 并且易于拆卸, 也能满足常规样品的测试, 是一个非常实用的解决方案。
601人看过
2022-12-27 15:23:37热点应用丨耦合热冷台附件实现上转换发光材料温度传感的研究
前言许多发光材料的发光特性随温度、压力或化学物质的存在而变化。这种特性在发光传感器的开发中得到了长期的应用。除了化学传感外,发光测温法也是最常用的传感方法之一。与其他方法不同,它不需要宏观的探针与探测区域进行物理接触。这是发光测温法无可比拟的优势。例如,可以功能化的发光纳米颗粒进入生物靶,荧光显微镜可以准确探测不同区域的温度。这种纳米测温法在医学领域有很大的潜力,如:对温度高于平均值的癌细胞进行成像[1]。发光测温可以根据强度、线宽、光致发光寿命或光谱位移的变化来进行。由于镧系离子的稳定性和窄光谱特性,很容易识别到这些变化,因此在温度传感的应用中经常使用镧系离子[2]。此外,镧系掺杂材料呈现上转换发光性质: 可被近红外(NIR)光激发,在光谱可见光区发射。近红外光谱激发减少了生物组织的自吸收和散射,因此远程激励变得更加容易。由于这一性质,越来越多的温度生物成像研究使用无机纳米掺杂镧离子制备上转换纳米颗粒 (UCNPs)[3]。图1. NaY0.77Yb0.20Er0.03F4上转换发光机理的结构示意图,其中红色和绿色的线代表发射跃迁。灰色的线代表非辐射跃迁。图1是上转换荧光粉NaY0.77Yb0.20Er0.03F4发光机理的示意图。至少需要两个980nm的光子去激发样品来产生可见区的发射。除了直接激发Er3+离子外,还存在从激发态Yb3+与Er3+激发态的能量转移,该材料在可见光光谱的蓝色、绿色和红色区域发光。取决于跃迁过程中Er3+能级的高低。上转换的测温法通常集中使用525nm和540nm两个波长的发射峰,分别对应2H11/2 →4I15/2和4S3/2 → 4I15/2能级跃迁。2H11/2和2H11/2两个能级在能量上紧密间隔,他们实际处于热平衡状态。因此,它们的粒子数比例可以用玻尔兹曼分布来表示:式中,Ni是能级i上的粒子数,Δe是两个能级间的能量差,k是玻尔兹曼常数,C是简并常数。基于此,525nm与540nm处荧光强度的比值RHS可用来推出2H11/2与4S3/2的比值,从而能够计算出样品的温度。爱丁堡(Edinburgh Instruments)荧光光谱仪FLS1000通过光纤耦合变温台能够完成该测试项目。此变温台不仅能够保证在FLS1000和显微镜下研究的为同一样品,并且没有任何中间样品转移步骤。本文通过FLS1000荧光光谱仪耦合变温台对上转换样品NaY0.77Yb0.20Er0.03F4进行不同温度下上转换发光的测试。测试方法与样品测试样品为NaY0.77Yb0.20Er0.03F4上转换发光粉末,购置于Sigma Aldrich。将样品放置于Linkam HFS350EV-PB4冷热台里的石英样品池中。通过光纤将冷热台与FLS1000样品仓相连接。使用稳态光源Xe2 980nm进行激发,激光能量要低,以防止样品变热。使用980nm的激光器往往会造成样品受激光照射而变热[4]。FLS1000配置:双单色器,标准检测器PMT-900。时间分辨的寿命测试使用脉冲氙灯(μF2)作为激发光源,采用MCS模式测试发光寿命。测试结果与讨论使用FLS1000的Fluoracle中温度mapping的测试功能,分别测试从-100℃到80℃每间隔20℃温度范围内,样品上转换发射的红光及绿光随温度的变化情况。结果如图2(上转化绿光)和3(上转换红光)所示。图2 中上转换绿光发射峰是由于Er3+的2H11/2 →4I15/2和4S3/2 → 4I15/2两个能级跃迁产生的。4S3/2 → 4I15/2和4F9/2 → 4I15/2对应发射峰的强度随着温度升高而降低。但是2H11/2 → 4I15/2对应的谱待变化的稍有不同:在273K以下,随着温度的增加其发光强度降低。但当温度继续升高时,增长缓慢。图2. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(绿光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980 nm, Δλex=10 nm, Δλem=10 nm, 步进step=0.10nm, 积分时间=1s/step。内插图为对应2H11/2→ 4I15/2跃迁的发射范围的放大图。图3. NaY0.77Yb0.20Er0.03F4温度相关的发射图谱(红光部分)。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试条件:λex=980nm, Δλex=10nm, Δλem=10nm, 步进step=0.10nm, 积分时间=1s/step。图4. NaY0.77Yb0.20Er0.03F4温度相关的寿命三维谱图。使用耦合Linkam冷热台的FLS1000光谱仪进行测试。测试2H11/2→ 4I15/2对应的发射。测试条件:λex=980nm, Δλex=15nm, λem=541nm ,Δλem=10nm, 灯源频率=100Hz, 采集时间:每条衰退曲线采集5分钟。红色和蓝色曲线分别代表-100℃和40℃下的测试结果。随着温度的增加,非辐射弛豫过程降低了整体的上转换发光过程。有关温度的猝灭的动力学可以通过图4所示的温度相关的三维寿命谱图来进行研究,当温度增加时,该样品的发光寿命从640μs降低至530μs,有明显下降。回到图2和图3,从4S3/2 ,2H11/2 到4F9/2的弛豫过程相对增加了红色光的发射强度。这可以从图5(a)的温度Rrg函数看出。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值,RHS是优异的温度指数参数(前言已介绍过),图5(b)是RHS随温度的变化图,图5(c)是相同数据的对数值。有趣的是,RHS并没有遵循玻尔兹曼曲线:在高温下,额外的弛豫过程发生并引发4S3/2 → 4I15/2跃迁的“缓慢增加”。这与之前的报告一致[5,6],证明了上转换的复杂动力学过程: 4H11/2到 4S3/2的非辐射过程在高温下变得更为重要,所以粒子数与RHS不相等。应该指出不同温度下的RHS 很大程度上取决于样品颗粒的大小[4,6]。为了说明上转换测温的概念,将曲线的低温区域拟合到图5 (c)所示的直线玻尔兹曼图中,可以得到荧光测温系统S的相对灵敏度。这是评价发光温度计系统的一个有用参数,计算方法如下:图5的斜率为-ΔE/k, 在20℃的灵敏度为1.0%K-1。这一结果与类似的上转换测温系统是一致的。图5.  上转换发射带强度的比值随温度变化的函数图:(a)红光和绿光的比值(b)2H11/2 →4I15/2和4S3/2 → 4I15/2的比值 (c) 图(b)的对数数据图。与玻尔兹曼图第 一部分的线性拟合如(c)所示。结论NaY0.77Yb0.20Er0.03F4温度相关上转换发光强度及寿命均可使用爱丁堡荧光光谱仪FLS1000 耦合Linkam冷热台进行测试。2H11/2 →4I15/2和4S3/2 → 4I15/2的比值可作为发光测温系统中的温度探针,其灵敏度为1.0%K-1。通过光纤耦合的Linkam冷热台附件能够使用户在发光测试和显微镜下灵活轻松切换,中途不需要样品转移步骤。参考文献[1] C. D. S. Brites, et al., Nanoscale 4, 4799-4829 (2012)[2] M. D. Dramianin, Methods Appl. Fluoresc. 4, 042001 (2016)[3] M. González-Béjar and J. Pérez-Prieto, Methods Appl. Fluoresc. 3, 042002 (2015)[4] S. Zhou, et al., Optics Communications 291, 138-142 (2013)[5] X. Bai, et al., J. Phys. Chem. C 111, 13611-13617 (2007)[6] W. Yu, et al., Dalton Trans. 43, 6139-6147 (2014)
304人看过
2017-04-08 19:46:24yb,er上转换材料做扫描电镜时导电吗
 
401人看过
2025-01-08 12:30:12氧指数测定仪什么材料
氧指数测定仪什么材料 氧指数测定仪是一种用于测试材料燃烧性能的设备,主要应用于聚合物、塑料及其他易燃材料的防火性能评估。氧指数(LOI)是材料在特定环境下燃烧所需的低氧浓度,它反映了材料的耐火性和自熄性。在选择氧指数测定仪的材料时,除了考虑设备本身的性能和稳定性外,还需要兼顾其耐高温、抗腐蚀等特点。因此,氧指数测定仪的材料选择对仪器的准确性和长期稳定性至关重要。本文将探讨氧指数测定仪所采用的主要材料,分析其技术要求和应用场景。 氧指数测定仪的主要材料 氧指数测定仪通常由多个关键部件构成,每个部件的材质选择直接影响到设备的使用寿命和测试精度。以下是常见的几种材料: 1. 不锈钢 不锈钢是氧指数测定仪中常见的外壳和主要结构材料,特别是304和316型号的不锈钢。其优异的耐腐蚀性、良好的机械性能和抗高温能力使其成为该类设备的理想选择。由于测定过程中涉及高温环境,不锈钢的耐热性和耐氧化性能能够有效保证仪器在长期使用中的稳定性和可靠性。 2. 铝合金 铝合金主要用于氧指数测定仪的部分轻型结构件,因其轻便、强度适中,且能够承受一定的温度变化。铝合金的成本相对较低,且加工性能良好,因此被广泛应用于一些对重量有要求的设备部分。 3. 高温陶瓷 高温陶瓷材料广泛应用于氧指数测定仪中的火焰传感器、加热元件及炉体部分。由于其能够承受极高的温度,并且不易受氧化或腐蚀,因此在高温燃烧环境下尤为重要。常见的高温陶瓷材料如氧化铝、硅酸铝等,不仅能够提供准确的测试数据,还具有较长的使用寿命。 4. 石英玻璃 石英玻璃材料常用于氧指数测定仪中的透明窗口,作为观察测试过程和火焰稳定性的观测通道。石英玻璃耐高温、化学稳定性强、透光性好,能够在高温燃烧过程中保持良好的视野,确保操作者可以实时观察到样品的燃烧状态。 5. 钨合金 钨合金因其优异的高温强度和高熔点,在一些高端氧指数测定仪中用于高温测试区域,尤其是在需要承受极端高温条件下的实验中。钨合金在高温下能保持良好的机械性能,因此被用作一些特殊结构部件,如加热元件的保护材料。 材料选择的影响因素 氧指数测定仪的材料选择不仅仅取决于性能需求,还与生产成本、仪器的使用环境和预期寿命等因素紧密相关。例如,长期高温测试可能需要选择更耐高温的材料,而需要频繁拆卸和维修的部件则应考虑选择耐磨损、易于清洁的材料。材料的热膨胀系数也是选择时的重要参考因素,因为温差可能导致仪器出现误差或损坏。 专业总结 氧指数测定仪作为一款精密的测试设备,对材料的要求极为严格。每种材料的选择都必须满足高温、耐腐蚀、强度以及抗氧化等多重性能要求。常用材料如不锈钢、铝合金、高温陶瓷、石英玻璃和钨合金各具优势,合理搭配这些材料,可以确保氧指数测定仪在不同使用环境下的度和稳定性。了解和掌握这些材料的性能特征是设计和使用氧指数测定仪的关键,能够为材料的燃烧性能测试提供更为可靠的保障。
24人看过
2025-01-13 18:00:14门尼粘度计检测什么材料
门尼粘度计检测什么材料 门尼粘度计是一种广泛应用于橡胶、塑料及相关领域的重要仪器,它能够测量材料的粘度和流变特性,尤其是在高温条件下的表现。该设备以其高精度、可靠性和快速性,成为了许多工业实验室和生产线不可或缺的工具。本文将围绕门尼粘度计的工作原理及其适用材料展开探讨,帮助读者了解门尼粘度计能够检测哪些材料及其在不同材料测试中的应用价值。 门尼粘度计主要用于检测橡胶、塑料以及其他聚合物材料的粘度变化。其测量原理基于材料在加热过程中受到的剪切力变化,从而推算出材料的流变性能。橡胶行业中,门尼粘度计被广泛用于检测天然橡胶、合成橡胶以及各种改性橡胶的加工性能,以便优化生产工艺和控制终产品的质量。门尼粘度值直接关系到橡胶的加工性、硫化速度和终产品的性能。 在塑料行业,门尼粘度计则用于测定不同类型的树脂、塑料合成物和改性塑料的流变特性。通过测试材料的粘度,可以评估其熔融状态下的加工性能,例如注塑、挤出等过程中的流动性。这对于确保塑料制品的加工稳定性以及优化生产工艺参数至关重要。门尼粘度计还能够测试一些添加剂、涂料、油墨及其他化工产品,广泛应用于化工、涂料等行业的质量控制和产品研发过程中。 值得一提的是,门尼粘度计不仅仅局限于高粘度的材料,还能够对低粘度、易流动的物质进行准确测量。在一些特殊应用中,如高分子聚合物、油脂、润滑油等流体的检测,门尼粘度计也能提供有效的测试数据,帮助研发和生产部门判断材料的适用性。 总结而言,门尼粘度计是测试各类材料流变特性的重要工具,尤其在橡胶、塑料、化工等行业中发挥着重要作用。它不仅能够提高产品的加工质量,还能为研发工作提供可靠的实验数据,是现代工业制造中不可或缺的一部分。
32人看过
苯并芘分子印迹专用柱
氧化安定性测试仪
TOC检测方法
冷热冲击箱
多通道平行浓缩仪
钙钛矿太阳能电池测试系统
LS-55 荧光光谱仪
环氧乙烷残留量的检测
自动透镜植入定位仪
汽车工业应用
标准溶液不确定度
总有机碳(TOC)分析
净信冷冻组织研磨仪
植物组织切片
热场发射扫描电镜
C18 色谱柱
安东帕旋光仪
针头式过滤器
介电常数分析
膜厚度测量
DPD分光光度法
HJ1079-2019
深脑钙成像技术
CIC-D120型离子色谱仪
低温恒温槽
饮用水再利用
重金属的检测
Conti Flow
国产总有机碳分析仪
紫外固化研究
fe-sem
连续流反应器
LC2000高效液相色谱仪
UHPLC色谱柱
分子层沉积
安东帕MCR系列流变仪