
- 2025-01-21 09:33:29原位加热实验
- 原位加热实验是一种在样品原始位置直接进行加热处理的实验方法。它通过控制加热温度和时间,模拟不同环境下的样品变化,用于研究材料的热稳定性、相变过程、化学反应动力学等。这种方法避免了样品转移带来的误差,提高了实验的准确性和可靠性。在材料科学、地质学、化学等领域具有广泛应用,对于深入理解材料的性质和行为具有重要意义。
资源:12582个 浏览:7次展开
原位加热实验相关内容
原位加热实验产品
产品名称
所在地
价格
供应商
咨询
- 扫描电子显微镜原位加热测试样品台
- 国内 上海
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式
- DENS Wildfire 原位加热样品杆
- 国外 欧洲
- 面议
-
复纳科学仪器(上海)有限公司
售全国
- 我要询价 联系方式
- DENS Climate 原位气相加热杆
- 国外 欧洲
- 面议
-
复纳科学仪器(上海)有限公司
售全国
- 我要询价 联系方式
- 电镜原位偏压加热系统NHB-SNL原位电化学
- 国内 上海
- 面议
-
上海纳腾仪器有限公司
售全国
- 我要询价 联系方式
- Gatan 原位加热台Murano 525
- 国外 美洲
- 面议
-
北京欧波同光学技术有限公司
售全国
- 我要询价 联系方式
原位加热实验问答
- 2023-04-12 16:50:58焦耳加热装置-焦耳热加热器-合肥原位科技
- 合肥原位科技焦耳加热装置,针对导电材料,科学家可利用其自身的焦耳效应,对其施加电气环境;针对非导电材料,则可通过我司配备的各类耐高温极速加热样品台进行加热,从而使材料在极短的时间内(0~10 S)达到极高的温度(1000~3000 ℃),升温速率最快可达到10000k/s。通过对材料的极速升温,可考察材料在极端环境、剧烈热震情况下的物性改变。该产品目前广泛应用在电池、催化、陶瓷、金属材料等领域,可通过极速升降温制备纳米尺度颗粒,单原子催化剂,高熵合金等。装置可定制电气环境及真空系统。配件包含:控制柜、真空腔、电极、真空泵、高温样品台、测温探头、适配线缆。合肥原位科技有限公司已构建原位表征系统解决方案(含测试)、催化剂评价装置及焦耳加热装置三大主营产品体系,可满足众多用户对于多环境原位表征的需求,同时为客户提供原位测试工作。目前已与国内270余家知名高校、科研单位建立了各类联络机制。联系我们,请登录“合肥原位科技有限公司”,欢迎咨询。
189人看过
- 2024-12-10 17:17:09湿热试验箱怎么加热
- 湿热试验箱是常见的环境试验设备,用于模拟高温、高湿度条件下的环境变化,以测试产品在极端环境下的耐受能力。加热过程是湿热试验箱的重要组成部分,直接关系到试验效果的准确性与稳定性。在本文中,我们将详细介绍湿热试验箱的加热原理、加热方式以及常见的加热系统,并分析如何选择适合的加热方式以保证试验的高效性和准确性。湿热试验箱的加热原理湿热试验箱的加热主要依赖于电加热元件,通常是采用金属加热管(如不锈钢电加热管)或PTC加热元件。加热系统通过电能转化为热能,逐步将试验箱内部的空气加热至设定温度。湿热试验箱内部的湿度控制系统也会在加热过程中维持一定的湿度水平,确保高温、高湿度环境的稳定性。加热方式的选择根据不同的需求和试验要求,湿热试验箱的加热方式有多种选择。常见的加热方式包括:空气加热系统:通过空气加热器将空气加热至设定温度,适用于需要恒定温度的试验环境。这种加热方式能够确保热量均匀分布,适合大多数常规湿热测试。水加热系统:一些湿热试验箱采用水加热器加热水蒸气,通过蒸汽加湿加热空气。这种方式能在较短时间内提高湿度,有助于加速湿热测试的过程。液态加热系统:液态加热方式通过加热液体介质进行热传递,常用于需要精确控制温度的环境测试。选择加热方式时,需要考虑测试产品的特性、试验时间的长短以及加热效率等因素,以确保测试结果的性。湿热试验箱加热系统的常见问题与解决方法湿热试验箱在加热过程中可能出现一些常见问题,例如加热速度过慢、温度不稳定等。解决这些问题的方法主要包括:定期检查电加热元件:加热管老化或损坏可能导致加热效率下降,定期检查和更换加热元件是确保加热系统正常运作的关键。合理配置加热功率:根据试验箱的体积和试验需求选择合适的加热功率,以确保加热速度和温度均匀性。加强温湿度传感器的校准:温湿度传感器是控制系统的核心,必须定期校准,以保证温度和湿度的精准控制。结语湿热试验箱的加热系统不仅直接影响试验过程的效率,也决定了试验结果的精度。因此,选择合适的加热方式、保持加热系统的良好状态,以及进行必要的设备维护,都是确保试验成功的关键。通过科学合理的加热方式与维护策略,湿热试验箱能够为产品的环境适应性测试提供可靠保障。
63人看过
- 2025-02-19 12:45:11糖衣机怎么加热
- 糖衣机怎么加热 糖衣机作为制药、食品工业中常见的设备,主要用于涂覆糖衣,提高产品的外观和口感。糖衣机的加热方式是影响糖衣效果和效率的关键因素。通过合理的加热方法,不仅可以提升涂层质量,还能节省能源,延长设备寿命。因此,了解糖衣机的加热方式对确保生产过程的顺利进行至关重要。 在糖衣机的加热过程中,通常有两种主要加热方式:蒸汽加热和电加热。蒸汽加热方式是利用蒸汽循环系统,迅速将热量传递到糖衣机内部,通过温控装置来调节温度,使糖衣均匀地覆盖在物料表面。这种方式热效率高,且能够保证糖衣的均匀性。电加热方式则通过电热管或电加热器直接将热量传递到糖衣机的内腔,这种方法操作方便,但需要特别注意温度控制,以防止糖衣因过热而融化或变色。 糖衣机的加热系统设置不仅关系到加热效果,还直接影响到生产效率和产品质量。合理的加热方式应根据不同的生产需求进行选择,确保加热均匀、温控精确,避免由于温度波动引发的糖衣质量问题。因此,选用合适的加热技术,并定期检查维护加热设备,是保证糖衣机高效运行的关键所在。
15人看过
- 2025-04-24 14:30:21湿热试验箱怎么加热
- 湿热试验箱是用于模拟高温高湿环境下设备和材料的性能测试的重要设备。在湿热试验箱的使用过程中,加热方式直接影响到试验结果的准确性和设备的使用寿命。了解湿热试验箱的加热原理和方法对于确保试验的顺利进行和设备的正常运作至关重要。本文将详细介绍湿热试验箱的加热方式,包括常见的加热技术、加热原理以及如何选择合适的加热方式,以确保试验环境的稳定性和精确性。 湿热试验箱的加热系统主要依赖于电加热、蒸汽加热和热风循环加热等方式。电加热是目前常用的加热方式,它通过电热丝将电能转化为热能,提供稳定的加热源。在湿热试验箱中,电加热器通常安装在试验箱的底部或侧面,通过温控系统精确调节箱内的温度。蒸汽加热则是利用外部蒸汽源,通过蒸汽管道将热量传输到试验箱内。该加热方式适用于对高温要求较高的测试场景,但需要注意蒸汽的稳定性和压力控制。热风循环加热技术通过电加热器加热空气,再通过风扇均匀地将热空气送入试验箱内,从而确保箱体内部的温度分布均匀。 选择合适的加热方式取决于试验需求的具体条件。例如,对于一些高湿度、高温度的测试环境,蒸汽加热可能更为合适;而对于一些温度控制较为的试验,电加热系统则是更常见的选择。加热方式的选择还应考虑设备的功耗、控制精度以及维护便利性。 通过深入了解湿热试验箱的加热原理与方法,用户可以根据自身的需求和试验要求,选择适合的加热技术,确保试验结果的准确性与设备的长期稳定运行。
6人看过
- 2022-12-06 13:04:21探秘肿瘤微环境,原位“看透”细胞因子
- 细胞因子是肿瘤微环境(Tumor Microenvironment,TME)中细胞通讯的关键介质,在癌症的发生、发展、治 疗和预后等多个方面发挥重要作用。在过去的 40 年中,细胞因子和细胞因子受体作为癌症靶点或癌症治 疗方法得到了广泛的研究。目前公认的临床前治 疗策略为增强干扰素和白细胞介素(包括 IL-2 ,IL-7 ,IL-12 和 IL-15 )的生长抑 制和免疫刺激作用,或抑 制细胞因子(如 TNF ,IL-1β 和 IL-6 )的炎症和促进肿瘤的作用[1]。图 1 . 细胞因子在肿瘤微环境中的作用特定细胞因子的表达也与肿瘤细胞的高存活率和高转移性密切相关。其中促炎细胞因子 IL-6 和 IL-8 与多种癌症相关,包括淋巴瘤、黑色素瘤、乳腺癌、前列腺癌和结肠直肠癌等 [2,3]。因此,分析细胞因子的表达是一种重要的诊断工具和预测癌症预后的关键因素。非放射性的 RNA 原位杂交技术(ViewRNA ISH)是一种高灵敏度的检测细胞因子表达的有效方法,并且可以对 1 至 4 个 mRNA 目标进行多重分析。检测原理如下图所示:图 2 . ViewRNA ISH 检测原理安捷伦BioTek Cytation 5 多功能细胞成像微孔板检测系统,可容纳多达四个荧光通道同时成像,快速并出色地成多色荧光成像。仪器配备的高内涵分析软件可自动计算细胞内 RNA 的表达水平。Cytation 5 活细胞成像工作站结合ViewRNA ISH,为细胞因子研究提供了一种高效率、高灵敏度和可重复的检测方法。实验案例分享 实验一.细胞因子mRNA的成像和分析 为研究细胞因子mRNA 在不同营养条件下的表达情况,设置两组对照实验。阳性对照细胞培养于完全培养基中,而阴性对照细胞经过 18 小时的血清饥饿处理。随后加入 ViewRNA 探针以标记 IL-6 、IL-8 和 ACTB mRNA ,在Cytation 5 上分别使用 RFP 、GFP 、Cy5 和 DAPI 通道对探针进行成像完成 ISH 细胞分析。图像结果表明:细胞因子mRNA 的表达在营养匮乏的条件下会显著降低。图 3 . 阳性和阴性对照组成像。HCT116 放大 20 倍图像作为( A )阳性对照和( B )阴性对照。MDA-MB-231 细胞放大 40 倍的图像作为( C )阳性对照和( D )阴性对照。蓝色:DAPI 染色的细胞核;绿色:标记 IL-8 mRNA ;橙色:标记 IL-6 mRNA ;红色:标记 ACTB mRNA 。接下来为了定量分析细胞因子表达,首先在 Cytation 5 的 DAPI 通道下进行细胞核计数,以确定每孔的细胞数量(图 4A )。然后分别在GFP 、RFP 通道进行细胞因子探针( IL-6 或 IL-8 )的荧光信号分析(图 4B )。通过细胞荧光信号的比率评估不同实验条件下的细胞因子表达(图 5 )。图 4 . 每个细胞的荧光信号分析。( A ) 使用 Agilent-BioTek Gen5 软件进行细胞分析圈选出 DAPI 标记的细胞核;( B ) 荧光标记的 IL-8 信号的图像分析。如图 5 所示,使用 ViewRNA ISH 和 Cytation 5 这一组合准确的量化了细胞内 IL-6 和 IL-8 mRNA 的表达。图 5 . MDA-MB-231 细胞中 IL-8 表达和 HCT116 细胞中 IL-6 表达,并以细胞数目进行校正。 实验二.诱导细胞因子 mRNA 的表达 使用不同剂量的 IL-1β 刺激 DU145 细胞,以分析细胞因子的 mRNA 的表达(图6)。图 7 结果显示:虽然 IL-6 和 IL-8 的 mRNA 表达增加,但 IL-8 的表达变化更为显著,这与先前研究结果一致[4]。IL-1β 的最 高剂量下,这两种细胞因子的表达减少则是由于细胞毒性。这验证了该检测方法的可行性与稳定性。图 6 . 不同浓度的 IL-1β 刺激下的 IL-6 、IL-8 和 ACTB 荧光 mRNA 探针信号 ( A ) 0 ng/mL;( B ) 0.02 ng/mL ;0.128 ng/mL;( D ) 0.8 ng/mL。蓝色:DAPI染色的细胞核;绿色:标记的IL-8 mRNA;橙色:标记的 IL-6 mRNA ;红色:标记的 ACTB mRNA 。图 7 . 不同浓度的 IL-1β 刺激下 DU145 细胞中 IL-6 和 IL-8 mRNA 的表达。 实验三.抑 制细胞因子 mRNA 的表达 研究表明丝裂原活化蛋白激酶( MAPK )可调节 IL-8 ,并证明用 MAPK/ERK 抑 制剂 U 0126 治 疗可减少 DU145 和 MDA-MB-231 细胞中的炎症细胞因子[4,5]。为了确认这一现象并验证 ViewRNA ISH 和 Cytation 5 这一组合的能力,将不同浓度的 U 0126 加入到每种细胞类型中孵育 30 分钟。然后用 1 ng/mL 的 IL-1β 刺激 DU145 细胞达 3 小时,而 MDA-MB-231 细胞未被刺激。使用 GFP 和 RFP 通道进行细胞计数和图像分析以评估在 U 0126 治 疗后 IL-8 和 IL-6 细胞因子 mRNA 的表达。采集的图像(图 8 )和计算的荧光信号强度 (图 9 )证实了 U 0126 的抑 制作用。此外,也验证了该方法的灵敏度,可以准确识别给予抑 制剂后 mRNA 的表达变化。图 8. U 0126 抑 制 IL-8 mRNA 的表达。图像显示了在不同浓度的 U 0126 处理后 ( A-E ) MDA-MB-231 细胞内 IL-6 、IL-8 和 ACTB 荧光 mRNA 探针信号;( F-J ) 为 DU145 细胞。蓝色:DAPI 染色的细胞核;绿色:标记的 IL-8 mRNA ;橙色:标记的 IL-6 mRNA ;红色:标记的 ACTB mRNA 。图 9 . U 0126 治疗后 IL-8 和 IL-6 mRNA 在 MDA-MB-231 和 DU 145 细胞中的表达结 语ThermoFisher 的 ViewRNA ISH 细胞分析试剂盒和探针提供一种灵敏的方法来检测 mRNA 表达。该方法在安捷伦BioTek Cytation 5 细胞成像系统的加持下得以更更快地采集多荧光通道的图像,并更精 准的计算出每一个细胞的荧光信号强度。这种检测、成像和分析的完 美结合提供了一种灵敏、灵活和高通量的方法用以检测细胞因子 mRNA 的表达。参考文献:[1] Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022 Apr;19(4):237-253.[2] Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M. Immunotherapeutic Interleukin-6 or Interleukin-6 Receptor Blockade in Cancer: Challenges and Opportunities. Curr Med Chem. 2018;25(36):4785-4806.[3] Vecchi L, Mota STS, Zóia MAP, Martins IC, de Souza JB, Santos TG, Beserra AO, de Andrade VP, Goulart LR, Araújo TG. Interleukin-6 Signaling in Triple Negative Breast Cancer Cells Elicits the Annexin A1/Formyl Peptide Receptor 1 Axis and Affects the Tumor Microenvironment. Cells. 2022 May 20;11(10):1705.[4] Kooijman R, Himpe E, Potikanond S, Coppens A. Regulation of interleukin-8 expression in human prostate cancer cells by insulin-like growth factor-I and inflammatory cytokines. Growth Horm IGF Res. 2007 Oct;17(5):383-91.[5] Chelouche-Lev D, Miller CP, Tellez C, Ruiz M, Bar-Eli M, Price JE. Different signalling pathways regulate VEGF and IL-8 expression in breast cancer: implications for therapy. Eur J Cancer. 2004 Nov;40(16):2509-18.
288人看过