- 2025-01-10 17:03:13活体光片成像
- 活体光片成像是一种先进的生物成像技术,它利用光片激发原理,对活体样本进行非侵入式、高分辨率的三维成像。该技术能够在保持生物体生理功能的同时,实现对其内部结构的动态观察,广泛应用于生物学、医学研究及药物筛选等领域。通过光片成像,科研人员能够捕捉到细胞、组织乃至整个生物体的精细结构与功能变化,为生命科学的研究提供了强有力的支持。
资源:12048个 浏览:40次展开
活体光片成像相关内容
活体光片成像资讯
-
- 采用微流控技术 观测光线中的“鱼薯”片
- 我们利用快速光片成像、光学半透明斑马鱼幼虫和微流控技术的优势,构建了一个与全脑活体成像兼容的微流控设备(NeuroExaminer)。
活体光片成像产品
产品名称
所在地
价格
供应商
咨询

- 磁场相机—磁光成像MOI
- 国内 上海
- 面议
-
上海昊量光电设备有限公司
售全国
- 我要询价 联系方式

- 布鲁克 BioSpec3T MRI/MRS 动物活体成像
- 国外 欧洲
- 面议
-
上海昔今生物集团有限公司
售全国
- 我要询价 联系方式

- 布鲁克SkyScan1176低剂量活体小动物CT成像
- 国外 欧洲
- 面议
-
上海昔今生物集团有限公司
售全国
- 我要询价 联系方式

- 高能量光声成像OPO激光器 Phocus
- 国外 美洲
- 面议
-
北京先锋泰坦科技有限公司
售全国
- 我要询价 联系方式

- 布鲁克高吞吐量体内Micro-CT小动物活体成像
- 国外 欧洲
- 面议
-
上海昔今生物集团有限公司
售全国
- 我要询价 联系方式
活体光片成像问答
- 2022-11-03 10:04:33LS18平铺光片显微镜成像案例—脂肪组织神经和血管的3D重构
- 脂肪组织在机体能量稳态调控和体温调节中发挥着重要的作用。脂肪组织由不同类型的脂肪细胞以及脂肪细胞前体、免疫细胞、成纤维细胞、血管和神经投射物组成。目前分析脂肪组织的免疫组织化学和免疫荧光方法主要是基于对具有相对高倍率成像的薄切片。然而,这种方法存在着明显的局限性。首先,复杂的丝状结构,如交感神经和脉管系统,已知在脂肪功能中起着重要的作用,薄切片仅捕获一小部分组织,这可能导致结论因分析的组织部分不同而产生差异,很难通过薄切片进行评估。其次,由于脂肪组织独特的无定形形态特征,很难仅根据切片染色来评估脂肪组织的三维结构。鉴于这些因素,非常需要一种可提供整个脂肪组织的三维可视化并且保持高分辨率的方法。 锘海生命科学自主研发的平铺光片显微镜具有三维成像速度快、对比度高、低光毒性、低光漂白等诸多优点。此外,依托于显微镜测样服务工作积累的丰富的组织透明化、组织免疫荧光染色及成像经验,锘海生命科学自主研发出了快速高效的锘海组织透明化试剂盒,大大提高样本组织透明化的效率,为广大科研工作者提供一套更为专业、完整的服务解决方案! 我们使用TH对脂肪组织的神经进行标记,如下图1、2所示,为小鼠附睾脂肪神经成像3D重构结果。该脂肪组织大小为6.0x8.5x2.5 mm,成像分辨率为横向4 μm,纵向10 μm,成像时长仅4分钟。图1 小鼠附睾脂肪组织神经成像图2 小鼠附睾脂肪组织神经成像(局部图)我们使用SM22对脂肪组织的大血管进行标记,如下图3、4所示,为小鼠附睾脂肪组织大血管成像3D重构结果。该脂肪组织大小为6.0x8.5x4.0 mm,成像分辨率为横向2 μm,纵向10 μm,成像时长仅10分钟。图3 小鼠附睾脂肪组织大血管成像图4 小鼠附睾脂肪组织大血管成像(局部图)参考文献:[1] Chi J, Crane A, Wu Z, Cohen P. Adipo-Clear: A Tissue Clearing Method for Three-Dimensional Imaging of Adipose Tissue. J Vis Exp. 2018 Jul 28;(137):58271. doi: 10.3791/58271. PMID: 30102289; PMCID: PMC6126572.[2] Wang P, Loh KH, Wu M, Morgan DA, Schneeberger M, Yu X, Chi J, Kosse C, Kim D, Rahmouni K, Cohen P, Friedman J. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature. 2020 Jul;583(7818):839-844. doi: 10.1038/s41586-020-2527-y. Epub 2020 Jul 22. PMID: 32699414.
201人看过
- 2022-05-07 14:00:52近红外二区小动物活体成像应用 | 研发X光激发的NIR-II余辉发光材料
- 背景介绍传统的荧光(Fluorescence)组织成像,是将成像组织置放于不断发射特定波长的光源照射下进行。受同一个光源照射影响,周围的组织自体同样会产生荧光,称为背景荧光。背景荧光的存在将使得信噪比下降,不利于对目标组织进行成像。因而近几年,科研工作者开始寻求一种新的发光成像——余辉发光(Persistent luminescence)。余辉发光是物体在照射光源并撤去光源后,持续发光的现象。因为发光时不再接受光源照射,因而在应用于组织成像时,能够减少自体荧光背景的影响,提高信噪比(图1)。 图1 荧光和余辉发光的原理对比图(蓝色箭头为激发光;绿色箭头为散射光;红色箭头为发射光;褐色箭头为背景荧光。强度可参考箭头粗细) 尽管余辉发光有如此明显的优势,目前涉及的材料仍有以下几个问题:1、材料主要为大型晶体,涉及高温的合成环境并缺乏纳米结构和表面性质上的可调性;2、材料成像多为可见光和NIR-I,成像深度有限;3、激发材料发光的波长多为可见光或紫外,能量低,不利于材料能量富集;4、一些可富集高能量的由X光激发的材料所发射的波长在可见光和NIR-I范围内,成像深度同样有限。 材料研发 针对以上问题,Peng Pei等人通过在NaGdF4、NaGdF4纳米粒子中加入镧系元素掺杂剂,成功合成出了X光激活的余辉发光纳米粒子(Persistent luminescence nanoparticles,PLNPs)。通过调整加入的元素种类,使得PLNPs具有可调谐性,且均在NIR-II波段内(图2)。图2 通过掺入不同的稀土元素(Er、Tm、Ho、Nd)调整纳米粒子在NIR-II波长段的发射波长 材料优化 文章中涉及的主体材料有NaYF4、NaGdF4 两种,因而可优化的方向较多。作者首先将作为主体的NaGdF4、NaGdF4 同时应用于一个纳米粒子中,形成壳核结构。之后对纳米粒子的掺杂剂浓度、核体积、壳厚度、结晶相(Crystalline phase)、主体基质(Host matrix)等性质进行的考察。其中对于主体基质,作者发现壳核使用同一种主体材料(NaYF4或NaGdF4)将获得更高的纳米粒子发光强度。这可能是由于同一种主体材料原子大小相同,使得晶体的缺陷(Defect)更少。 体内成像 优化后的Er-PLNPs进行了小鼠的腹部血管成像和输尿管成像测试。在腹部血管成像测试中,相对于荧光成像,余辉发光成像获得了更高的肿瘤/正常组织亮度比(T/N ratio),尤其在注射后的5 min时,可达到荧光成像信噪比的3.7倍。而在输尿管成像测试中,作者在小鼠肾盂部位注射后,肾盂、输尿管和膀胱都能够在NIR-II成像中观察到,其T/N比相对于荧光成像达到了4.1倍。 图3 余辉发光纳米粒子(上)与荧光纳米粒子(下)分别在注射后 5、10、20 min 得到的NIR-II成像 图4 余辉发光纳米粒子(红)与荧光纳米粒子(蓝)注射后的肿瘤与正常组织信号强度比(T/N ratio) 小结 凭借可调谐的NIR-II成像波长、高信噪比、高分辨率、低细胞毒性等特点,Peng Pei等人的成果大大拓展了现有X光激发的余辉发光材料的种类和应用场景。但同时,发光效率仍有待提高,降低用于激发的X光剂量使其达到安全门槛也是今后拓展研究的重要方向。 参考文献[1] Pei, P., Chen, Y., Sun, C. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021). 锘海 SWIR 1.0 近红外二区活体荧光成像系统采用低噪声和高灵敏度的进口InGaAs 红外探测器,结合动物气体麻醉装置及便捷的操作界面,实现实时荧光信号成像。通过镜头切换,可分别完成宽场和局部放大成像,具有非常高的荧光信号采集能力。高帧频不仅可以实现单幅图片采集,更可以完成视频拍摄,帮助您捕获整个实验过程。 锘海-近红外二区小动物活体成像系统 往期推荐:● 近红外二区小动物活体成像——高信噪比双成分造影剂协助肿瘤手术成像● 近红外二区小动物活体成像 —— 呼吸速率监控● 近红外二区小动物活体成像 —— 稀土纳米颗粒协助肿瘤切除手术
288人看过
- 2022-07-20 13:38:49光声成像材料 | 肿瘤微环境激活的光声成像显影剂
- 在生物成像和光诊疗学领域,通过对材料的结构调整以控制其光学性质是探索新材料,发现新应用的重要且常见方式。贵金属就是其中较为主要的一类原料,但通常的贵金属材料存在两个明显缺点:一、激发波长通常落在可见光和近红外一区(NIR-I,700 – 1000 nm),这使得成像的深度降低,同时无法与组织发生明显的作用;二、该类材料通常不具备激活功能(即始终在线,Always-on),使得难以从成像中分辨目标和其他无关组织,同时可能会存在未知副反应。 在这样的背景下,作者Chunyu Zhou等人将目标放在更高信噪比、更大成像深度的近红外二区(NIR-II,1000 – 1700 nm),开发能够对肿瘤微环境进行响应的贵金属纳米材料。该材料以金纳米粒子(Gold nanoparticles,AuNPs)为主体(见图1),在乙醇和水的混合体系中使其形成纳米链(Nanochain)。之后引入Tetraethyl orthosilicate,(TEOS),水解后包裹金纳米链,形成核鞘结构(Core-sheath nanostructure,AuNCs@SiO2)。注射至小鼠体内后,因肿瘤微环境(Tumor microenvironment,TME)中高H2O2水平触发邻近金纳米颗粒在AuNCs@SiO2的有限局部空间内融合,从而产生了具有强NIR-II吸收的串状结构。 图1:AuNCs@SiO2作用示意图因AuNCs@SiO2具有TME激活特性,因此不容易受其他组织的影响,表现出优异的光声成像性能(图2)。 图2:正常组织与肿瘤组织的超声、光声成像对比 同时,AuNCs@SiO2在1064 nm处光热转换效率高达82.2%(图3),可导致癌细胞严重死亡,显著抑制肿瘤生长(图4、5、6)。 图3:AuNCs@SiO2与其他已报道的光热治疗试剂的转换效率对比:1) AuNCs@SiO2; 2) Au3Cu@PEG TPNCs; 3) Au-wires-on-AuNR; 4) Pt Spiral; 5) Cu2MnS2 NPs; 6) Nb2C (Mxene); 7) Cu3BiS3 NRs; 8) L-Pdots; 9) TBDOPV-DT NPs; 10) SPN-DT图4:注射PBS和AuNCs@SiO2的荷4T1瘤小鼠光热红外热成像(1064 nm NIR-II激光,0.5 W/cm2)图5:注射PBS和AuNCs@SiO2后,肿瘤部位温度与照射时长的变化趋势 图6:接受相应治疗后的小鼠肿瘤大小对比(I:PBS;II:AuNCs@SiO2;III:PBS+Laser;IV:AuNCs@SiO2+Laser) 总结:作者成功合成出具有TME响应的、同时具有光声成像和光热治疗功能的二氧化硅包裹自组装金纳米链。通过TME中高浓度H2O2水,使金纳米粒子表面柠檬酸氧化,进而脱离纳米粒子表面,导致金纳米粒子融合,产生强NIR-II吸收。这一新型材料或许能够为准确非侵入性诊疗打开新的大门。 美国PhotoSound 小动物3D光声/荧光成像系统 (PAFT) 美国PhotoSound小动物全身3D光声/荧光成像系统(PAFT)为小动物活体成像和表征提供了完整的解决方案。该系统集成了三种互补的三维成像模式:光声成像(PAT)、荧光成像(FMT)、生物发光成像(BLT),可同时实现小动物的3D光声、3D荧光和3D生物发光成像,该系统可为生物组织提供高分辨率、高对比的解剖学成像效果。 可实现近红外一区和近红外二区(670-2600 nm)小鼠全身3D光声/荧光成像系统,采用OPO可调式激光器,提供670-2600 nm连续脉冲激光、完全3D光声成像(具有100 um等向分辨率的完全三维成像,非切片叠加成像)、高通量 (256个电子通道)、灵敏度高(60 nM ICG )、桌面式设计,方便使用、成像速度快 (完成一次3D扫描需30秒)。 往期回顾● 美国PhotoSound小动物全身3D光声/荧光成像系统● 小鼠解剖应用笔记 —— 美国PhotoSound小动物全身3D光声/荧光成像系统● 光声成像应用 | 探寻动脉粥样硬化斑块
350人看过
- 2023-08-21 11:50:20激光共聚焦荧光显微镜 活体荧光物质检查
- 激光共聚焦显微镜,简称CLSM(Confocal Laser Scanning Microscopy),是一种利用激光共振效应进行成像的显微镜。它通过使用激光束扫描样品的不同层面,将所得到的图像合成成一幅清晰的三维图像。与传统显微镜相比,激光共聚焦显微镜具有更高的分辨率和更强的穿透能力,可以观察到更加细微的结构和更深层次的物质。在活体荧光物质的检查中,激光共聚焦显微镜发挥了重要的作用。通过标记活体细胞或组织的特定结构或分子,激光共聚焦显微镜可以实时观察到这些结构或分子的活动和分布情况。在生物医学领域,它可以用于观察细胞的生长、分裂和死亡过程,研究细胞信号传导和分子交互作用等。在药物研发中,它可以用于观察药物在活体细胞或组织中的分布情况,评估药物的疗效和毒性。此外,在神经科学领域,激光共聚焦显微镜可以用于观察神经元的活动和连接,揭示大脑的工作机制。 NCF950激光共聚焦显微镜较宽场荧光显微镜的优点:l 能够通过荧光标本连续生产薄(0.5至1.5微米)的光学切片,厚度范围可达50微米或更大。(主要优点)l 控制景深的能力。l能够从样品中分离和收集焦平面,从而消除荧光样品通常看到的焦外“雾霾",非共焦荧光显微镜下无法检测到。(最重要的特点)l 从厚试样收集连续光学切片的能力。l 通过三维物体收集一系列图像,用于二维或三维重建。l收集双重和三重标签,精确的共定位。l 用于对在不透明的图案化基底上生长的荧光标记细胞之间的相互作用进行成像。l 有能力补偿自发荧光。 耐可视共聚焦成像效果图 尼康共聚焦成成像效果图NCF950激光共聚焦显微镜应用,共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡;2、生物化学:酶、核酸、FISH、受体分析3、药理学:药物对细胞的作用及其动力学;4、生理学:膜受体、离子通道、离子含量、分布、动态;5、遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断;6、神经生物学:神经细胞结构、神经递质的成分、运输和传递;7、微生物学和寄生虫学:细菌、寄生虫形态结构;8、病理学及病理学临床应用:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断;9、生物学、免疫学、环境医学和营养学。NCF950激光共聚焦显微镜配置NCF950激光共聚焦配置表激光器激光405 nm、488 nm、561 nm、640 nm探测器波长:400-750nm,探测器:3个独立的荧光检测通道;1个DIC透射光检测通道扫描头最大像素大小:4096 x 4096 扫描速度:2 fps(512 x 512像素,双向),18 fps(512 x 32像素,双向),图像旋转: 360°扫描模式X-T, Y-T, X-Y, X-Y-Z, X-Y-Z-T针孔无级变速六边形电动针孔;调节范围:0-1.5毫米共焦视场φ18mm内接正方形图像位深12bits配套显微镜NIB950全电动倒置显微镜光学系统NIS60无限远光学系统(F200)目镜(视野)10×(25),EP17.5mm,视度可调-5~+5,接口Φ30观察镜筒铰链式三目观察镜筒,45度倾斜,瞳距47-78mm,目镜接口Φ30,固定视度;1)目/摄切换:(100/0,50/50,0/100);2)目视/关闭目视/可调焦勃氏镜NIS60物镜10×复消色差物镜,NA=0.45 WD=4.0 盖玻片=0.1720×复消色差物镜,NA=0.75 WD=1.1 盖玻片=0.1760×半复消色差物镜,NA=1.40 WD=0.14 盖玻片=0.17 油镜100×复消色差物镜,NA=1.45 WD=0.13 盖玻片=0.17 油镜物镜转换器电动六孔转换器(扩展插槽),M25×0.75聚光镜6孔位电动控制:NA0.55,WD26;相衬(10/20,40,60选配)DIC(10X,20X/40X)选配.空孔照明系统透射柯拉照明,10W LED照明;落射照明:宽场光纤照明6孔位电动荧光转盘(B,G,U标配);电动荧光光闸;中间倍率切换手动1X,1.5X、共焦切换机身端口分光比:左侧:目视=100:0;右侧:目视=100:0;平台电动控制:行程范围130 mm x100 mm (台面325 mm x 144 mm )最大速度:25mm/s;分辨率:0.1μm - 重复精度:3μm。机械可调样品夹板调焦系统同轴粗微动升降机构,行程:焦点上7下2;粗调2mm/圈,微调0.002mm/圈;可手动和电动控制,电动控制时,最小步进0.01um;DIC插板10X,20X,40X插板;可放置于转换器插槽;选配控制摇杆,控制盒,USB连接线软件软件:NOMIS Advanced C图像显示/图像处理/分析2D/3D/4D图像分析,经时变化分析,三维图像获得及正交显示,图像拼接,多通道彩色共聚焦图像
444人看过
- 2025-02-17 14:30:16核磁共振成像成像特点是什么?
- 核磁共振成像成像特点 核磁共振成像(MRI)作为一种非侵入性医学成像技术,在现代医学中得到了广泛应用。与传统的X射线和CT扫描不同,核磁共振成像通过利用强磁场和射频脉冲,生成高分辨率的内部图像,能够清晰地呈现身体各个组织和器官的结构。本文将深入探讨核磁共振成像的成像特点,并阐明其在临床应用中的优势。 高分辨率的软组织成像 核磁共振成像显著的特点之一是其在软组织成像方面的优越性。传统的成像技术如X射线或CT扫描主要依赖于硬组织的密度差异,而MRI则能够提供软组织的细节图像。无论是脑组织、肌肉、关节还是器官,核磁共振都能提供清晰的图像,这使得医生在诊断时能够准确识别各种疾病,如脑部肿瘤、脊柱疾病、心血管疾病等。 无辐射危害 与X射线和CT扫描等影像技术不同,核磁共振成像不会使用任何形式的电离辐射,这使得其在许多临床情境下成为一种更加安全的选择。特别是在需要多次检查的情况下(如癌症随访或慢性病监控),MRI因其零辐射特性而具有明显的优势。MRI对孕妇和儿童等敏感人群更为友好,是其在儿科和产科中应用的关键因素之一。 多平面成像能力 核磁共振成像具有独特的多平面成像能力,即能够在不同的平面(如横截面、冠状面、矢状面等)上进行成像。这一特点使得MRI能够从多角度、多方位获取图像,极大提高了疾病诊断的精确度和可靠性。通过多平面重建,医生可以清晰地了解患者病变区域的空间关系,从而进行更有效的诊断和。 组织对比度良好 核磁共振成像提供了较为优异的组织对比度,这使得不同类型的组织在图像中的分辨更加明显。例如,肿瘤和正常组织的对比度非常高,帮助医生识别肿瘤的边界和形态特征。MRI技术还可以通过使用不同的序列(如T1、T2加权成像)来突出显示不同类型的组织结构,这对于临床中的诊断工作至关重要。 动态成像和功能性成像 随着技术的不断发展,MRI不仅能够提供静态的解剖学图像,还能够进行动态成像和功能性成像。例如,通过使用功能性MRI(fMRI)技术,医生可以观察到大脑在执行特定任务时的活动情况,这对于神经科学的研究和疾病的诊断具有重要意义。MRI还可以通过动态对比增强成像(DCE-MRI)评估肿瘤的血流情况,进一步提高肿瘤的评估精度。 总结 核磁共振成像凭借其高分辨率软组织成像、无辐射危害、多平面成像能力、优异的组织对比度以及动态成像和功能性成像等特点,已成为医学影像学领域中不可或缺的重要技术。随着技术的不断进步,MRI将继续在疾病诊断和中发挥着越来越重要的作用,尤其在软组织成像和复杂疾病的早期发现中具有不可替代的优势。 这篇文章结构紧凑,内容详实,使用了相关的SEO关键词,适合于优化网站排名。如果您有任何特定要求或修改意见,可以告诉我,我会根据您的需要进一步调整。
148人看过
- 公司新闻
- 接触角表征光刻胶的附着力
- 2000亿贴息贷款
- A级玻璃容量瓶
- 政府贴息医疗设备更新改造项目
- 耐可视荧光显微镜
- 瑞沃德20年
- 全自动化学吸附仪
- 光栅耦合干涉技术
- 摩方微纳3D打印系统
- 氧气发生器产品线
- 色差仪Lab取值范围
- 恒温循环试验箱
- ATAC-seq分析
- XPS表面分析技术
- 先进陶瓷产业技术
- 液相色谱-质谱联用仪
- 透射电镜TEM
- 超窄带波分复用(UNBWDM)
- 活体光片成像
- 单光子计数技术
- 高斯分布分析
- 用于涂层评价的主要电化学方法
- 高能量密度电池技术
- 玻璃电极注射
- 生物常温电镜的应用技术
- 真菌毒素检测
- 瑞士万通论文奖励计划
- Picarro光腔衰荡光谱技术
- 荧光寿命测量
- 实验室金相切割机
- 流程自动化的系统解决方案
- 温湿度振动试验箱
- 小鼠脑部病毒注射实验
- V-100涡旋混匀仪
- 新一代纳米颗粒追踪分析仪
- 双相系统结合共聚焦拉曼


