仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

技术中心

当前位置:仪器网>技术中心> 技术参数> 正文

荧光入门介绍

来源:徕卡显微系统(上海)贸易有限公司 更新时间:2024-01-15 16:31:14 阅读量:650

20240115-896187045.png

荧光是George Gabriel Stokes于1852年S次报道的一种现象。他观察到萤石在紫外线照射后开始发光。荧光是光致发光的一种形式,是指一种材料被光照射后会发射出光子。发射光的波长比激发光更长。这种效应又称为斯托克斯位移。


以荧光为工具在显微镜中的应用

荧光在显微镜中有着广泛的应用,是观察特定分子分布的重要工具。细胞中的绝大多数分子并不会发出荧光,因此必须用荧光分子即所谓的荧光素进行标记。对于感兴趣的分子可以直接标记(例如,用DAPI标记DNA),或者使用可与特异性抗体偶联的荧光素进行免疫染色。免疫染色时通常必须对细胞进行固定。

荧光显微镜还可对活细胞或组织进行延时成像。为此,对于感兴趣的蛋白质可以使用基因编码的荧光分子进行标记,如GFP(绿色荧光蛋白)。对于感兴趣的分子(如Ca2+)还可以使用可逆结合的合成染料(如fura-2)或转基因天然蛋白质(如GFP衍生物)进行标记。

20240115-216032197.png

图1:当特定波长(激发波长)的光照射到分子上(例如照射到荧光团中)时,光子会被分子的电子吸收。然后,电子从它们的基态(S0)提升到更高的能级,即激发态(S1’)。这个过程被称为激发(1)。激发态寿命很短(通常为10-9/-10-8秒),在此期间电子的一些能量会丢失(2)。当电子离开激发态(S1)返回基态(3)时,它们会失去在激发过程中获得的剩余能量。荧光团的获得的能量会以光子形式释放,释放的光子波长以比激发光波长更长,从而能量更少。这种现象被称为斯托克斯位移。


3.png


20240115-1648526298.png


20240115-1379404118.png

图4:小鼠原代海马神经元细胞,蓝色:转染细胞标记;绿色:肌动蛋白,TRITC;红色:GluA Ampa受体单位,Texas Red;灰色:突触小泡蛋白,Cy 5


20240115-1542831881.png

图5:果蝇幼虫,绿色:RNA结合蛋白,Alexa 488


磷光的机制原理

由于磷光分子发光的时间比荧光素长得多,因此它们储存激发能量的方式肯定有所不同。这种差异的基础在于两种形式的激发能级,即单重激发态和三重激发态都基于不同的自旋排列。

自旋是电子的一种属性。简单来说,自旋描述了由电子旋转引起的角动量。电子的自旋方向可以是正方向(+1/2),也可以是负方向(−1/2)。更高能级的自旋配对可以在相互方向上平行或反平行。在反平行自旋配对中,单个角动量相互补偿,同时自旋总值为零。这种自旋排列就称为单重态。两种平行自旋互不补偿且所得数值不同于零值,在这种情况下,自旋被称为三重态。

当电子从单重态激发态回到基态时,就会产生荧光。但在某些分子中,被激发电子的自旋可以在一种称为系统间交叉的过程中转换为三重态。这些电子失去能量,直到它们处于三重基态。这种态比基态具有更高的能量,但也比单重态激发态具有更低的能量。因此,电子无法切换回单重态,也不能轻易地返回基态,因为量子力学只允许自旋总值为零。因此分子被困在其能量状态当中。

但从三重基态到基态的一些变化有时还是有可能的。这些变化会发射出光子和磷光。由于一次只有少数事件可能发生,三重基态呈现为能量储库的形式,因此能够在更长的一段时间内发出磷光。


冷发光在显微镜中的应用

对于显微镜,荧光是Z为实用的一种冷发光。荧光素可以很容易地通过特定的光源(如灯和滤光系统或激光器)在特定波长下激发,发射光和激发光可以通过波长来加以区分(斯托克斯位移)。

利用荧光成像,实验室人员可以对细胞内的分子数量和位置进行特征描述。荧光显微镜的另一个优点是可以同时使用几种荧光素。荧光素只需其激发和发射波长不同即可。因此,不同目标分子均可同时观察并开展大量的实验,例如开展共定位的研究等。


20240115-1705149157.png

图6:果蝇,幼虫龄期,绿色:Feb211阳性神经元及其轴突,Alexa 488;红色:CNS纤维部分(即所有轴突),Cy3;蓝色:细胞核,DAPI。感谢德国Eggenstein-Leopoldshafen毒理学与遗传基因研究所,Karlsruhe研究所Christoph Melcher博士提供的图片。


20240115-131227739.png

图7:小鼠肾脏切片,绿色:肾小球和肾曲小管,Alexa 488 WGA;红色:F-肌动蛋白(普遍存在于肾小球和刷状缘);蓝色:细胞核,DAPI


20240115-1976157380.png

20240115-1568261632.png

图9:荧光显微镜下获得的分裂中期FISH染色染色体。感谢东京大学前沿科学研究生院人类进化实验室Yumiko Suto博士提供的图片。



参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
你可能还想看
  • 技术
  • 资讯
  • 百科
  • 应用
  • 流式细胞仪荧光相关知识介绍
    当某种常温物质经某种波长的入射光照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的波长长的出射光;很多荧光物质一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。
    2025-10-222843阅读
  • 荧光分光光度计选购
    以较优的价格,选中适合自身的荧光分光光度计,对每一个采购员来说都是极大的挑战,需要我们掌握相应的市场信息和选购技巧。在日常采购的过程中,如何选购分光光度计,有什么注意事项呢?
    2025-10-186008阅读 荧光分光光度计
  • 荧光共聚焦显微镜结构
    其通过使用特定波长的激光光源激发荧光标记物,从而实现对样品在不同深度的三维成像,具有比传统光学显微镜更高的图像清晰度和对比度。本文将详细探讨荧光共聚焦显微镜的基本结构,分析其各个组成部分如何协同工作,提供精确的图像数据,并探讨其在科研中的重要作用。
    2025-10-20126阅读 共聚焦显微镜
  • 荧光细胞分析仪作用
    通过荧光标记,细胞内部的特定分子、结构和过程可以被精确地观察和量化,从而为科研工作者提供深入的细胞信息。在本篇文章中,我们将探讨荧光细胞分析仪的工作原理、主要作用以及它在实际应用中的重要性。
    2025-10-2067阅读 细胞分析仪
  • 荧光共聚焦显微镜原理
    通过利用荧光染料与激光光源的相互作用,荧光共聚焦显微镜能够获取高分辨率的图像,突破传统显微镜的成像局限。本文将深入解析荧光共聚焦显微镜的工作原理,介绍其基本构造与技术优势,并探讨其在现代科研中的重要应用。了解这一技术不仅有助于提升对显微成像的认识,也为相关领域的科研工作者提供了更为精确的分析工具。
    2025-10-21160阅读 共聚焦显微镜
  • 查看更多
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有175年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。

更多>>ta的最新文章
显微课堂 | 选择科研级显微镜时需要考虑的因素
显微课堂 | 与Helmut Gnaegi一起掌握聚合物超薄切片技术
显微课堂 | 人工智能驱动的乳腺癌研究多重染色成像空间分析工具
关注 私信
热点文章
国环高科 GGC-BX 全自动水蒸气蒸馏仪参数
太仓华利达电热恒温培养箱DHP-9052参数
太仓华利达鼓风干燥箱DGX-9030参数
泰克混合信号示波器MSO68B参数
罗德与施瓦茨示波器RTH1004参数
贝士德 多组分吸附穿透曲线分析仪BSD-MAB参数
贝士德 多站重量法气体蒸气吸附仪BSD-VVS参数
赋能微纳制造,引领科研创新丨托托科技•无掩模紫外光刻机2025年度总结
隧道洞外亮度检测仪:专为解决隧道内外明暗差异导致的视觉适应问题而设计
校园气象站实施方案:立足校园实际需求,搭建趣味与实用兼具的气象观测平台
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消