PμSL 3D打印技术在三维复杂组织支架中的应用
3D打印技术近年来被广泛应用于组织工程应用中,利用这一技术可以稳定可靠加工特定尺寸的复杂三维支架,以有效构筑三维生物模拟环境用以相关生命科学研究。本文以类巴基球这一新型支架结构为例,展示面投影微立体光刻3D打印技术如何快速大面积制作三维精细复杂组织支架。
细胞在三维生理环境中的形貌和分化与其在二维组织培养环境中有很大的差别,近年来研究者们对三维结构系统中的细胞生理行为进行了广泛研究。然而,这些三维组织系统在化学组分、力学特性和形状等方面相比二维系统都复杂的多。如何稳定可靠加工出高质量的三维聚合物支架用于后续系统研究细胞的相关行为,仍是首要亟待解决的难题。3D打印凭借其任意复杂三维加工的优势,已被广泛应用于加工各类型组织支架。(如图1所示)
图1 使用3D打印技术制作的各类型三维组织支架
相比于其他3D打印技术,面投影微立体光刻(PμSL)3D打印技术具有打印精度高、打印速度快、大幅面跨尺度加工、材料适应范围广(聚合物、生物陶瓷等材料)等诸多优点,可适应多种支架结构的打印制作。如图1c所示,利用PμSL 3D打印技术加工的人工轴突支架,可用于直接观察和定量髓鞘形成过程,以及髓鞘化细胞对物理因素和药剂的反应。图1f所示的青蛙骨头支架,被用作生长因子传递的载体工具,最 终实现了骨骼缺损中软骨到骨骼的再生。
然而,对于一些新型的精细支架结构,由于其结构复杂程度高、特征尺寸小、以及大幅面小批量制作的需求,普通精度的面投影微立体光刻技术3D打印技术仍然难以满足其制作要求。如图2所示的镂空类巴基球结构组织支架(巴基球结构即C60的分子结构,此处讨论的结构由该结构衍变而来),单个支架整体尺寸为200 μm直径,其中的杆径为14 μm,表面开孔边长为25 μm。对于普通精度光固化3D打印技术,由于其设备光学分辨率通常大于50 μm,完全无法打印出14μm的特征细节。
图2 类巴基球结构组织支架
深圳摩方材料科技有限公司利用其开发的2 μm光学精度设备nanoArch® S130设备,成功实现了对这一新型支架结构的加工制作。对于结构中的十几微米杆径,用2 μm的高分辨像素点可轻易加工完成。另一方面,这一结构为高密度结构,即结构表面开孔只有二十几微米,特别是在Z方向上。这对于基于层层堆叠的3D打印技术同样是个巨大的挑战,即层与层之间既要保持良好的粘接性以实现稳定的支架结构,又要控制其每层固化厚度在合理的数值范围以保持所需的开孔尺寸。摩方材料通过调节打印材料固化深度、打印层厚及切片图片,有效地平衡了材料固化厚度和极小开孔尺寸之间的关系,最 终制作出高质量的类巴基球结构组织支架,如图3所示。
图 3 摩方材料nanoArch® S130打印的类巴基球组织支架结构
本文以类巴基球结构组织支架为例,展示了面投影微立体光刻3D打印技术在三维组织支架方面的加工优势,为三维结构系统中的细胞生理行为的研究提供了良好的样件平台,可有效促进相关组织工程、再生医药等应用领域的发展。对于类巴基球这一新型3D组织支架的生物应用研究,本公众号将在后续进行详细报道。
—— END ——
最受关注文章 TOP 5
3D打印在压电材料方面的应用
快速驱动连接器行业创新创造之高精密3D打印
高精密3D打印技术在医用内窥镜行业创新应用
科研级超高精度3D打印在仿生材料领域的应用
基于面投影微立体光刻技术(PμSL)的3D打印
全部评论(0条)
推荐阅读
-
- PμSL 3D打印技术在三维复杂组织支架中的应用
- 本文以类巴基球结构组织支架为例,展示了面投影微立体光刻3D打印技术在三维组织支架方面的加工优势,为三维结构系统中的细胞生理行为的研究提供了良好的样件平台
-
- 基于面投影微立体光刻技术(PμSL)的3D打印
- PμSL技术采用整面曝光,其中曝光图形由DMD控制产生。
-
- PμSL与TPP微纳光固化3D打印技术(文末有惊喜)
- 增材制造被认为是“一项将要改变世界的技术”。光固化3D打印是其中的一个重要方向,以数字化模型为基础通过光与材料
-
- PμSL与TPP微纳光固化3D打印技术(文末有惊喜)
- TPP是一种利用超快脉冲激光将光敏材料(树脂、凝胶等)在焦点区域固化成型的工艺。PμSL则是使用紫外光,通过动态掩模上的图形整面曝光固化树脂成型的工艺。
-
- 北京航空航天大学蒋永刚课题组《Soft Robotics》:基于PμSL 3D打印技术制备的波形人工触须传感器用于不同流体的分析
- 北京航空航天大学蒋永刚课题组基于面投影微立体光刻(PμSL) 3D打印技术结合PDMS浇铸工艺制备了波形人工触须传感器
-
- 焦点光斑分析仪的选型指南:激光3D打印应用领域(SLA&SL
- 焦点光斑分析仪的选型指南:激光3D打印应用领域(SLA&SLM) 为了使用基于激光的增材制造工艺创造出一致的、坚固的结构,以满足航空航天标准或医疗设备的FDA要求,需要已知尺寸、功率密度和焦点位
-
- 微尺度3D打印定制化支架在组织工程的应用
- Islam的研究重 点是3D打印玻璃化碳材料,这种材料通常可通过3D打印前驱体材料然后进行碳化实现的。
-
- 时下流行的3D打印鞋中底制作技术与相关3D打印企业盘点
- 企业在选择合适的3D打印技术时不仅需要考虑到打印材料的性能,打印设备的精度和效率也是其考量的重点,今天就来给大家盘点一下目前流行的鞋中底3D打印技术。
-
- 时下流行的3D打印鞋中底制作技术与相关3D打印企业盘点
- 3D打印技术时不仅需要考虑到打印材料的性能,打印设备的精度和效率也是其考量的重点,今天就来给大家盘点一下目前流行的鞋中底3D打印技术。
-
- 西安交通大学张辉课题组《Materials & Design》:PμSL 3D打印花瓣状微结构表面实现液滴操控、油水分离和减阻
- 花瓣状微结构表面具有优异拒水性可用于超大液滴承载、微反应器、无损液滴搬运、倾斜表面液滴快速脱附、油水分离、气泡保持和减阻等领域。
-
- 探索3D打印技术发展与落地应用-2020年2月27日广州国际3D打印技术应用峰会
- 广州国际3D打印技术应用峰会,将于2020年2月27日在广州隆重举办。
-
- 清锋科技弹性体3D 打印在运动中的应用
- 3D打印在制造业的另一大优势就是显著缩短生产时间,因其无需注塑模具,打印速度快,并且后处理大大减少。定制化的产品在经过数字扫描后当天即可生产,以更快地治疗损伤和恢复 。
-
- 基于投影微立体光刻的3D打印技术及其应用
- 在实现力学超材料方面,通过投影微立体光刻3D打印技术一次成型以拉压变形占主导的八隅体桁架结构超轻-超硬力学超材料
-
- 高精密3D打印技术在医用内窥镜行业创新应用
- 随着微型化和定制化趋势的到来,产品结构越来越小和薄,内窥镜企业都在致力于寻找相匹配的精密加工方法。
-
- 超声波墨水实现深层组织3D打印 超声波技术如何应用于仪器行业
- 据最新一期《科学》杂志报道,美国杜克大学和哈佛大学医学院工程师开发出一种生物兼容墨水。通过吸收超声波,这种墨水可凝固成不同的3D形状和结构。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论