仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

应用方案

仪器网/ 应用方案/ 基于电子鼻多传感器融合的茶叶存储时间识别-德国AIRSENSE电子鼻

立即扫码咨询

联系方式:400-822-6768

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

扫    码    分   享

      笔者尝试以ZG十大名茶之一的安徽黄山毛峰茶为研究对象,用电子鼻对已存储 60、120、180、240、300、360 d 的干茶进行检测,获取茶叶香气的特征信息;分别采用主成分回归(PCR)、偏Z小二乘回归(PLS)、BP 神经网络(BPNN)方法,建立茶叶存储时间的预测模型,并对 3 种预测模型性能进行对比分析,以寻求茶叶存储时间的z佳识别方法。

检测样品:茶叶样本为从安徽黄山当地茶厂订购的黄山毛峰明前茶

主要仪器:德国Airsense的PEN3便携式电子鼻

检测指标:茶叶香气的特征信息

实验结果:借助电子鼻检测存储 60、120、180、240、300、360 d 的黄山毛峰茶香气信息,根据电子鼻各传感器响应曲线变化特点,选取出 1 组能够表征不同香气信息的基本特征变量,分别采用主成分回归(PCR)、偏Z小二乘回归(PLS)和 BP 神经网络(BPNN)方法,建立茶叶存储时间的预测模型。测试样本集对 3 种预测模型的检验结果表明:PCR、PLS、BPNN 模型的预测标准误差分别为 10.05、6.04、3.21 d;Zda预测相对误差分别为 11.03%、7.02%、5.89%;平均预测相对误差分别为 6.73%、4.74%、3.62%;预测值与实际值之间的决定系数 R 2 分别为 0.862、0.896、0.987。3 种模型都能较好地对茶叶存储时间进行预测,相比较而言,BPNN 模型性能z优,PLS 模型性能优于 PCR 模型。

结论:茶叶香气与茶叶品质密切关联,是评定茶叶品质的重要依据。本研究为茶叶存储时间识别建立了一种方法。

     本文献来源于“蚌埠学院电子与电气工程学院”。


标签:茶叶香气茶叶电子鼻茶叶品质

相关产品

参与评论

全部评论(0条)

获取验证码
我已经阅读并接受《仪器网服务协议》

推荐方案

在线留言

换一张?
取消