
- 2025-01-21 09:35:14钙钛矿太阳电池
- 钙钛矿太阳电池指利用钙钛矿结构材料制成的太阳能电池。具有高光电转换效率、低成本、易制备等特点。能够直接将太阳能转化为电能,应用于太阳能发电领域。对推动可再生能源发展、减少碳排放具有重要意义。
资源:109个 浏览:14次展开
钙钛矿太阳电池相关内容
钙钛矿太阳电池资讯
-
- 合肥研究院自主研发可自我修复的钙钛矿太阳电池
- 钙钛矿型太阳能电池是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池,也称作新概念太阳能电池。
-
- 真空沉积技术制备高性能大面积钙钛矿太阳电池组件
- 太阳电池组件是由高效晶体硅太阳能电池片、超白布纹钢化玻璃、EVA、透明TPT背板以及铝合金边框组成。具有使用寿命长,机械抗压外力强等特点。
-
- 用户速递|Angew. Chem. : 18%记录效率!低维异质结助力碳基无机钙钛矿太阳电池
- 钙钛矿太阳能电池(PSCs)因其高效率和低成本的优势获得广泛关注与研究。然而,钙钛矿在成核和晶体生长的过程中不可避免地会形成缺陷,被认为是制约器件光伏性能和稳定性的重要原因。
钙钛矿太阳电池文章
-
- 荧光光谱仪案例分享:综合钝化策略提高碳基无机钙钛矿太阳电池
- 近日,华南农业大学的饶华商&钟新华团队提出了一种“湿膜处理”和“干膜处理”相结合的综合策略,分别钝化CsPbI3 薄膜的表面和体相缺陷。
-
- 用户前沿丨最新Nature: 26.1%效率!二维类钙钛矿稳定钙钛矿太阳电池
- 美国西北大学Kanatzidis、Sargent和Marks团队在研究中利用爱丁堡稳瞬态一体化荧光光谱仪FS5获得钙钛矿太阳能电池载流子迁移过程,为进一步的材料改性提供依据。
-
- 用户速递 | 华南农业大学饶华商&钟新华团队: 综合钝化策略提高碳基无机钙钛矿太阳电池
- 应用方向:碳基钙钛矿太阳电池、低维钙钛矿、湿膜处理、干膜处理
钙钛矿太阳电池产品
产品名称
所在地
价格
供应商
咨询
- 钙钛矿镀膜机
- 国内 辽宁
- 面议
-
沈阳科晶自动化设备有限公司
售全国
- 我要询价 联系方式
- 钙钛矿镀膜机
- 国内 辽宁
- 面议
-
沈阳科晶自动化设备有限公司
售全国
- 我要询价 联系方式
- GSL-1800X-ZF6钙钛矿镀膜机
- 国内 辽宁
- 面议
-
沈阳科晶自动化设备有限公司
售全国
- 我要询价 联系方式
- 太阳电池IV 测试仪(稳态光源)
- 国内 北京
- 面议
-
北京赛凡光电仪器有限公司
售全国
- 我要询价 联系方式
- 7-SC100 多功能太阳电池QE/IPCE测试仪
- 国内 北京
- 面议
-
北京赛凡光电仪器有限公司
售全国
- 我要询价 联系方式
钙钛矿太阳电池问答
- 2023-07-21 10:25:31ALD在钙钛矿方面的应用
- “碳达峰”和“碳中和”一直都是能源领域的热点话题,作为助力“双碳”战略的生力军,光伏产业具有举足轻重的地位。目前光伏的主力是硅太阳能电池,它们具有效率高、稳定性好、产业链完备、使用寿命长的优势。然而,晶硅电池的转换效率到达瓶颈,且从硅料到组件至少经过4 道工序,单位制程需要3 天以上,同时还需要大量人力、运输成本等。为了让太阳能的利用更加便捷、高效且廉价,科学界和工业界正在研制新型太阳能电池;钙钛矿太阳能电池就是备受关注的后起之秀,钙钛矿叠层效率极限可达50%,而钙钛矿组件在单一工厂完成生产,原材料经过加工后直接成组件,没有传统的“电池片”工序,大大缩短制程耗时。但是,如何制备大面积且能保持较高效率的钙钛矿太阳能电池,依然是难题,也成了制约其产业化应用的瓶颈。 原速ALD在钙钛矿电子传输层、空穴传输层、钝化层、封装阻水层等领域已取得了突破性进展,获得了业界的认可。为了更高效地服务于世界光伏产业高地,原速也在上海建立了技术研发中心。截止目前,公司已形成服务于钙钛矿电池研发、中试、100MW、 GW级量产的产线ALD技术解决方案。1、ALD-SnO2 应用于钙钛矿电池电子传输层 • ALD 相比于传统沉积技术,在制备超薄膜时具有更优异的均匀性和保形性,以及缺陷更少的优点 2、ALD-NiO 应用于钙钛矿电池空穴传输层 • ALD 可用于制备性能优异的超薄(
137人看过
- 2023-07-25 10:40:14半导体和钙钛矿材料的高光谱(显微)成像
- 目前在光伏业界,正在进行一项重大努力,以提高光伏和发光应用中所用半导体的效率并降低相关成本。这就需要探索和开发新的制造和合成方法,以获得更均匀、缺陷更少的材料。无论是电致还是光致发光,都是实现这一目标的重要工具。通过发光可以深入了解薄膜内部发生的重组过程, 而无需通过对完整器件的多层电荷提取来解决复杂问题。HERA高光谱照相机是绘制半导体光谱成像的理想设备,因为它能够快速、定量地绘制半导体发射光谱图,且具有高空间分辨率和高光谱分辨率的特性。硅太阳能电池的电致发光光谱成像光伏设备中的缺陷会导致光伏产生的载流子发生重组,阻碍其提取并降低电池效率。电致发光光谱成像可以揭示这些有害缺陷的位置和性质。"反向"驱动太阳能电池(即施加电流)会产生电致发光,因为载流子在电极上被注入并在有源层中重新结合。在理想的电池中,所有载流子都会发生带间重组,这在硅中会产生1100 nm附近的光(效率非常低)。然而,晶体结构中的缺陷会产生其他不利的重组途径。虽然这些过程通常被称为"非辐射"重组,但偶尔也会产生光子,其能量通常低于带间发射。捕获这些非常罕见的光子可以了解缺陷的能量和分布。在本实验中,我们使用了HERA SWIR (900-1700 nm),它非常适合测量硅发光衰减。测量装置如图1所示:HERA安装在三脚架上,在太阳能电池上方,连接到一个10A的电源。640×512像素的传感器安装在样品上方75厘米处,空间分辨率约为250微米。图1. 实验装置最重要的是,HERA光学系统没有输入狭缝,因此光通量非常高,是测量极微弱光发射的理想选择。图2.A和2.B显示了两个波长的电致发光(EL)图像:1150 nm(带间发射)和1600 nm(缺陷发射),这是4次扫描的平均值(总采集时间:5分钟)。通过分析这些图像,我们可以看到,尽管缺陷区域的亮度远低于主发射区域,但它们仍被清晰地分辨出来。此外,具有强缺陷发射的区域的带间发射相对较弱。我们可以注意到有几个区域在两个波长下都是很暗的;这可能是由于样品在运输过程中损坏了电池造成的。图2.C中以对数标尺显示了小方块感兴趣区域(图2A和2B中所示)的光谱。图 2.A 和 B:两个选定波长(1150 nm 和 1600 nm)的电致发光(EL)图像。C:A和B中三个不同区域对应的电致发光光谱(图像中的彩色方框)。金属卤化物钙钛矿薄膜的光致发光显微研究通过旋涂等技术含量低、成本效益高的方法,可以制造出非常高效的太阳能电池和LED。这些方法面临的一个挑战是在微观长度的尺度上保持均匀的成分。光致发光显微镜是表征这种不均匀性的一个特别强大的工具。HERA高光谱相机可以连接到任何显微镜(正置或倒置)的c-mount相机端口,并直接开始采集高光谱数据,无需任何校准程序。图3. 与尼康LV100直立显微镜连接的HERA VIS-NIR。在本实验中,我们使用HERA VIS-NIR(400-1000 nm)耦合到尼康LV100直立显微镜(图3)来表征两种卤化物前驱体合金的带隙分布。将两种卤化物前驱体合金化的优点是能够调整材料的带隙;然而,这两种成分经常会发生逆混合,从而导致性能损失。本实验的目的是检测这种逆混合现象:事实上,混合比的局部变化会改变局部带隙,从而导致发射不同能量的光子。在这种配置中,激发光来自汞灯,通过带通滤光片在350 nm处进行滤光,并通过发射路径上的二向色镜将其从相机中滤除。HERA的高通量使其能够在大约1分钟的测量时间内收集完整的数据立方体(130万个光谱)。图4.样品的光谱综合强度图(A:全尺寸;B:放大)。图4.A和4.B分别显示了所有波长(400-1000 nm)总集成信号的全尺寸和放大图像,揭示了长度尺度在1 µm左右的明亮特征。当我们比较亮区和暗区的光谱时(图5.B中的黑色和红色曲线),我们发现暗区实际上也有发射, 不仅强度较低,而且波长中心比亮区短。事实上,光谱具有双峰形状,很可能与逆混合前驱体的发射相对应。图5.A的发射图清楚地显示了带隙的这种变化。我们现在可以理解为什么低带隙区域看起来更亮了--载流子可能从高带隙区域弛豫到那里,并且在发生辐射重组之前无法返回。图5.A:显示平均发射波长的强度图。B:亮区和暗区的发射光谱(正常化)。东隆科技作为NIREOS国内总代理公司,在技术、服务、价格上都具有优势。如果您有任何产品相关的问题,欢迎随时来电垂询,我们将为您提供专业的技术支持与产品服务。
157人看过
- 2023-08-18 11:29:42用户前沿丨杨培东 Nature-钙钛矿高熵半导体
- 尽管高熵材料 high-entropy materials是一系列功能材料的极 佳候选者,但其形成通常需要超过1,000°C高温合成程序,以及复杂加工技术,如热轧。解决高熵材料极端合成要求的途径之一,应该包括设计具有离子键网络和低内聚能的晶体结构。今日,美国 加利福尼亚大学伯克利分校 (University of California, Berkeley) Maria C. Folgueras, Yuxin Jiang,Jianbo Jin & 杨培东Peidong Yang,在Nature上发文,报道开发了一种新型金属卤化物钙钛矿高熵半导体high-entropy semiconductor,HES单晶的室温溶液20°C和低温溶液80°C合成方法因为金属卤化物钙钛矿的软离子晶格性质,这些高熵半导体HES单晶设计在立方Cs2MCl6(M=Zr4+, Sn4+, Te4+, Hf4+, Re4+, Os4+, Ir4+ 或 Pt4+)空位有序的双钙钛矿结构上,该双钙钛矿结构来自稳定络合物在多元素墨水中的自组装,即在强盐酸中充分混合的游离Cs+ 阳离子和五或六个不同[MCl6]2–阴离子八面体分子。所得到的单相单晶跨越五和六个元素的两个高熵半导体HES族,以接近等摩尔比例作为无规合金near-equimolar ratios占据M位,并保持整体Cs2MCl6晶体结构和化学计量。在高熵5-和6-元素Cs2MCl6单晶中,各种[MCl6]2-八面体分子轨道的无序结合产生了复杂的振动和电子结构,在5或6个不同孤立八面体分子的受限激子态之间,具有能量转移相互作用。High-entropy halide perovskite single crystals stabilized by mild chemistry. 基于温和化学,稳定高熵化卤化物钙钛矿单晶图1:高熵五和六元Cs2MX6单晶的合成设计。图2:五和六元高熵钙钛矿单晶的相鉴定。图3:高熵钙钛矿单晶的元素分析,以确认在M位点上结合了五或六种元素。图4:在高熵钙钛矿单晶中,M位金属中心绝 对构型的高分辨结构测定。图5:确认五或六个不同[MCl6]2-八面体复合物的无序性质贯穿单相高熵钙钛矿系统,没有微结构晶粒形成。图6:高熵钙钛矿单晶的光电行为。文献链接Folgueras, M.C., Jiang, Y., Jin, J. et al. High-entropy halide perovskite single crystals stabilized by mild chemistry. Nature (2023). https://doi.org/10.1038/s41586-023-06396-8https://www.nature.com/articles/s41586-023-06396-8本文译自Nature。来源:今日新材料声明:仅代表译者个人观点,小编水平有限,如有不当之处,请在下方留言指正!仪器推荐爱丁堡仪器稳态瞬态荧光光谱仪FS5加州大学伯克利分校杨培东教授团队开发了一种新型金属卤化物钙钛矿高熵半导体溶液合成方法,研究中使用爱丁堡稳态瞬态荧光光谱仪FS5,通过光致发光的激发(PLE)光谱,阐明了五元素ZrSnTeHfPt 单晶中的能量转移现象。爱丁堡稳态瞬态荧光光谱仪FS5标配自动滤光片轮,可自动获取完整的三维荧光光谱,去除瑞利散射的影响,因此可进一步的通过激发光谱研究物质的能量转移过程。天美分析更多资讯
806人看过
- 2022-12-07 12:22:57用户成果赏析I Science:钙钛矿太阳能电池稳定性研究
- 一、用户简介北京理工大学材料学院作为国家首批博士学位授权点和首批博士后流动站,主要致力于在燃烧、爆轰、超高速、超高温等极端条件下面向装备服役的先进特种材料的研究,同时促进新材料的军民融合应用与协同发展,在国防/民用的新能源、阻燃、光电信息等新材料前沿研究方面不断强化。[1]为对各类功能材料进行全面表征和深入研究,材料学院于2018年建立了先进材料实验中心,配备了飞行时间二次离子质谱仪(TOF-SIMS,PHI Nano TOF II)、扫描微聚焦式X射线光电子能谱仪(XPS,PHI Quantera II和PHI Versaprobe III)、高分辨冷场发射扫描电镜(SEM)、原子力显微镜(AFM)、多功能X射线衍射仪(XRD)、电感耦合等离子体质谱仪(ICP-MS)、液体及固体核磁共振波谱仪(NMR)等近40台(套)先进的分析测试仪器设备,将实验中心打造成国际一 流的先进材料研究平台,大力推动了学院在锂离子电池能源材料、钙钛矿发光材料、光伏材料、阻燃材料等的研究进展。[2]二、用户成果赏析光伏发电新能源技术对于实现碳中和目标具有重要意义。近年来,基于有机-无机杂化钙钛矿的光电太阳能电池器件取得了飞速的发展,目前报道的最 高光电转化效率已接近26%。卤化物钙钛矿材料具有无限的组分调整空间,因此表现出优异的可调控的光电性质。然而,由于多组分的引入,钙钛矿材料生长过程中会出现多相竞争问题,导致薄膜初始组分分布不均一,这严重降低器件效率和寿命。图1. 钙钛矿晶体结构由于目前用于高性能太阳能电池的混合卤化物过氧化物中的阳离子和阴离子的混合物经常发生元素和相分离,这限制了器件的寿命。对此,北京理工大学材料学院陈棋教授等人研究了二元(阳离子)系统钙钛矿薄膜(FA1-xCsxPbI3,FA:甲酰胺),揭示了钙钛矿薄膜材料初始均一性对薄膜及器件稳定性的影响。研究发现,薄膜在纳米尺度的不均一位点会在外界刺激下快速发展,导致更为严重的组分分布差异化(如图2所示),最 终形成热力学稳定的物相分离,并贯穿整个钙钛矿薄膜,造成材料退化和器件失活。该研究成果以题为“Initializing Film Homogeneity to Retard Phase Segregation for Stable Perovskite Solar Cells”发表在Science期刊。[3]图2. 二元 FAC 钙钛矿的降解机制。(A-H)钙钛矿薄膜的组分初始分布和在外界刺激下的演变行为。(I-N)热力学驱动下,钙钛矿薄膜的物相分离现象的TOF-SIMS表征TOF-SIMS作为重要的表面分析方法,具有高检测灵敏度(ppm-ppb)、高质量分辨率(M/DM>16000)和高空间分辨率(16000)和高空间分辨率(
214人看过
- 2023-05-30 09:50:54苏大廖良生教授Angewandte:高效镧系掺杂钙钛矿基近红外LED,通过量子剪裁实现!| 前沿用户报道
- 成果简介钙钛矿纳米晶体(PeNCs)在可见光中具有高效和高色纯度的依尺寸和组成而可调的发光。然而,在近红外(NIR)区域获得高效的电致发光(EL)具有挑战性,限制了其潜在的应用。在这里,我们展示了一种高效的近红外发光二极管(LED),通过将镱离子掺杂到PeNC基质(Yb3+: PeNCs)中,将EL波长延长到1000 nm,这是通过PeNC基质直接敏化Yb3+离子来实现的。高效的量子剪裁工艺使Yb3+: PeNCs的光致发光量子产率(PLQYs)高达126%。通过卤化物组成工程和表面钝化策略来改善PLQY和电荷传输平衡,我们展示了一种在990 nm中心波长处峰值EQE为7.7%的高效近红外LED,代表了发射波长超过850 nm的最 高效钙钛矿基LED。创新点:在本研究中,我们将镱离子掺杂到钙钛矿纳米晶体中,使电致发光波长延长至1000 nm。卤化物化学计量控制和表面钝化的协同作用使我们能够实现高效的近红外LED,峰值EQE为7.7%,是迄今为止峰值波长超过850 nm的OLED和PeLED中效率最 高的。图文导读图1 a) Yb3+:PeNCs的TEM图像和元素映射,TEM图像的插入部分显示了晶体衍射图样。b) XRD图谱,c) IR PLQY, d) PL光谱,e) Yb3+: CsPb(Cl1-xBrx)3 PeNCs的不同卤化物化学计量量的吸收。f) Yb3+: PeNCs的能量转移机制,三种重组途径分别记为(1)、(2)、(3)。g)在所选泵-探头延迟时的TA光谱。h)不同名义掺杂浓度的Yb3+:PeNCs在450nm处的归一化TA信号衰减随时间的变化。图2 a)基于Yb3+: CsPb(Cl1-xBrx)3 NC发射极的近红外PeLEDs器件结构示意图。b)能带图。c)近红外LED内部光能通道的功率分布。d)基于Yb3+: CsPbCl1-xBrx NC发射器的PeLEDs EQE与J特性,仅考虑近红外峰值计算EQE。e)不同激子波长下PeNC薄膜的PLQY和近红外PeLEDs的峰值EQE(平均值)。f) 3.2 V ~ 6 V不同偏差下对应的EL谱,步长为0.2V。插图显示了在3.2 V电压下工作的PeLED的EL谱。图3a)插图为BTC的分子结构。b) EQE-电流密度特性。c)原始(蓝色曲线)和钝化(红色曲线)LED器件的峰值EQE直方图。基于原始和钝化Yb3+:PeNCs的纯空穴器件d)和纯电子器件e)的J-V曲线。黑色虚线表示陷阱填充电压。f)我们的设备之间的峰值EQE比较,之前报道的近红外PeLDs和OLED (EL峰值波长超过850 nm)。图4 a) Yb3+: PeNCs的表面钝化机理。原始Yb3+和钝化Yb3+的XPS谱: Yb 4d; b)Pb 4f5/2和4f7/2 c)的XPS谱. d)硫氰酸苄酯、原始和钝化Yb3+: PeNCs的FTIR透射光谱。e)原始和钝化Yb3+:PeNCs在480 nm波长处获得的瞬态PL衰变。f) PeNCs在480 nm处剩余激子发射的PLQY(蓝色曲线)和Yb3+离子在990 nm处近红外发射的PLQY(粉红色曲线)。论文信息Efficient Near-Infrared Electroluminescence from Lanthanide-Doped Perovskite Quantum CuttersYan-Jun Yu, Chen Zou, Wan-Shan Shen, Xiaopeng Zheng, Qi-Sheng Tian, You-Jun Yu, Chun-Hao Chen, Baodan Zhao, Zhao-Kui Wang, Dawei Di, Osman M. Bakr, Liang-Sheng LiaoFirst published: 25 March 2023 https://doi.org/10.1002/anie.202302005
118人看过
- 公司新闻
- 大孔径超低温强磁场测量系统
- 雷电防护装置检测资质单位
- 5G应用安全创新示范中心
- 激光与增材制造
- 规划环境影响评价技术导则
- 医疗装备产业发展规划
- 制造业质量管理
- 产业计量测试中心
- 国家工业资源综合利用
- 纳米电热催化降解技术
- 2021年度指南项目安排公示
- 界面科学实验室评审
- 中国-芬兰能源合作示范项目
- 电力并网运行管理规定
- 低-高速离心机
- 工业级无人机
- 上海市科技创新行动计划
- DAC附件
- 数字化实施指南
- 聚乙烯吡咯烷酮
- 材料基因组
- 联合科研资助基金合作研究项目
- 技术评价实验室名单
- 滨海核电厂温排
- 综合利用示范建设
- 酵母工业水污染物排放标准
- 装备专业委员会
- 高粉尘强腐蚀环境
- 废纸加工行业
- 智能化耙吸挖泥船
- 移液器检测
- 铁路国际标准
- 沉降在线监测系统
- 网络安全技术应用试点示范工作
- 环境影响评价文件审批原则
- 6G移动通信