- 2025-01-10 10:53:00粒径分布检测
- 粒径分布检测是一种用于测量和分析颗粒物质粒径分布的技术。它利用激光散射、显微镜观察等方法,对颗粒物质进行粒径大小的测量和统计分析。该技术具有高精度、高灵敏度和实时性好等特点,能够广泛应用于环境监测、材料科学、制药等领域,为科研和工业生产提供重要的粒径分布数据支持。
资源:19935个 浏览:106次展开
粒径分布检测相关内容
粒径分布检测资讯
-
- Nicomp纳米粒度仪用于1nm样品粒径分布检测
- 动态光散射、DLS 系统的规格通常取决于样品。但许多 DLS 系统将尺寸下限指定为 1 nm 或更小 (0.3 nm)。本技术说明证明 Nicomp? DLS 系统能够重复测量 1 nm 以下的颗粒尺
-
- 功能更新 | 使用BeNano流动模式检测BSA粒径分布
- 功能更新 | 使用BeNano流动模式检测BSA粒径分布
粒径分布检测文章
-
- AccSizer 粒度仪用于蛋黄酱粒径分布检测
- 制作新型蛋黄酱(或蛋黄酱类涂抹酱)的配方师也许希望能够分析油滴大小,以优化新的配方,从而获得最长的保质期。AccuSizer可用于研究新型配方,它可以准确界定滴度分布和浓度。
-
- 功能更新 | 使用BeNano流动模式检测BSA粒径分布
- 功能更新 | 使用BeNano流动模式检测BSA粒径分布
粒径分布检测产品
产品名称
所在地
价格
供应商
咨询

- HORIBA LA-960V2 激光粒径分布分析仪
- 国外 亚洲
- ¥1
-
优尼康科技有限公司
售全国
- 我要询价 联系方式

- HORIBA激光粒径分布分析仪
- 国外 欧洲
- 面议
-
广州千云生物有限公司
售全国
- 我要询价 联系方式

- 气溶胶粒径分布测量仪/气溶胶粒径谱仪
- 国内 上海
- 面议
-
上海千实精密机电科技有限公司
售全国
- 我要询价 联系方式

- 化学发光检测
- 国外 美洲
- 面议
-
珀金埃尔默企业管理(上海)有限公司
售全国
- 我要询价 联系方式

- 微生物致病菌快速检测系统
- 国内 河南
- 面议
-
河南中检食安生物科技有限公司
售全国
- 我要询价 联系方式
粒径分布检测问答
- 2022-05-12 15:47:37使用BeNano检测VB1和溶菌酶的粒径分布
- 关键词:VB1、溶菌酶、粒径分布、动态光散射动态光散射技术的粒径有效检测分辨率通常在2.5-3倍粒径。在大部分该类设备仪器的宣传资料中通常使用60-300nm范围的窄分布标准样品的混合样检测结果来体现。很少报道动态光散射技术在10纳米以下的混合样品的分辨率能力。这一方面是由于缺乏这种小粒径范围内的标样,另一方方面是由于受到仪器的灵敏度,相关器低通道的运算能力的影响。在这个应用报告中,使用丹东百特公司出品的BeNano 180系列纳米粒度仪检测了VB1和溶菌酶混合样品。这两个样品本身粒径都非常小,散射极弱,对于动态光散射设备的灵敏度,相关曲线的通道设置和算法都提出了较高的挑战。原理动态光散射技术DLS,也称作光子相关光谱PCS或者准弹性光散射QELS,是利用激光照射在样品溶液或者悬浮液上,通过光电检测器检测样品颗粒布朗运动产生的散射光波动随时间的变化。利用相关器的时间相关性统计学计算可以得到相关曲线,进而得到颗粒的布朗运动速度,即扩散系数D。通过斯托克斯-爱因斯坦方程,我们把颗粒的布朗运动速度和其粒径DH联系起来:
283人看过
- 2022-11-21 12:04:41【PSS-TN-22027A】USP 729 脂质注射乳剂中的整体粒径分布
- 全文共2173字,阅读大约需要7分钟摘要:用于静脉注射的脂质注射乳剂是大豆油制的无菌水包油乳剂,检测脂质体注射乳剂的平均粒径大小以及尾端大颗粒分布对于人体健康显得十分关键。USP 729着重介绍了采用光散法及光阻法来检测脂质注射乳剂平均粒径以及尾端大颗粒分布的两种方法。奥法美嘉公司旗下的Nicomp Z3000以及Accusizer A7000 APS两款仪器很好的满足了USP 729的要求,为客户的检测提供了完整的解决方案。关键词:脂质注射乳剂、平均粒径、尾端大颗粒、Nicomp Z3000、Accusizer A7000 APS乳状注射液又称脂肪乳注射液,是水包油的分散体系, 外观呈半透明或不透明的乳状液体, 为热力学不稳定体系。其制备工艺一般采用高压均质法或微射流法, 无论采用哪种制备方法, 脂肪乳的粒径都无法得到完全均一的值, 存在一定粒径分布范围。通常, 在脂肪乳中,当油脂的密度低于周围水媒介密度约10%时, 乳析现象就会产生。乳析的乳剂只要轻轻搅拌, 乳滴仍能重新分布。但当脂滴合并成直径超过1μm的大脂滴时, 脂滴的合并便是不可逆的过程, 脂滴会逐渐聚集, 1μm脂滴可“生长”成 5μm甚至更大的脂滴颗粒, 直至自由脂滴从乳剂中析出,成为不稳定脂肪乳。1、工作原理USP 729中着重介绍了检测平均粒径大小的动态光散射法与检测尾端大颗粒的光阻法。检测平均粒径大小动态光散射(DLS)动态光散射(DLS),同样理解为与光子相关的光谱法(PCS)。DLS或者说PCS技术的基础是分析由于悬浮在液体中的任何粒子(包括乳粒)的随机布朗运动或扩散而引起的散射光强随时间的波动。光强由合适的检测器(例如光电倍增管)以给定的入射角度(通常为90度)测量,该检测器可以测量由悬浮颗粒运动导致的快速随机的散射光强度,测量得到的光强数据用来计算光强自相关管函数,利用斯托克-爱因斯坦方程计算样品粒径大小。经典光散射经典光散射,基于米氏散射理论。测量散射光角度来反映散射光强的变化,通常在大范围的检测角。检测尾端大颗粒光阻法单个粒子通过狭窄的光感区时阻挡了一部分入射光,引起到达检测器的入射光强度瞬间降低,强度信号的衰减幅度理论上与粒子横截面(假设横截面积小于光感区的宽度),即粒子直径的平方成比例。用系列标准粒子建立粒径与强度信号大小的校正曲线。仪器测得样品中乳粒通过光感区产生的信号,根据校正曲线计算出乳粒的粒径及加权体积。使用单粒子光学传感技术传感器时,需知道重合限与最 佳流速。2、相关仪器及标准在仪器标准化测试过程中规定了样品体积精度、样品流速、粒度响应曲线直径校准、传感器分辨率的各项要求。平均粒径(1) 仪器:采用动态光散射法的设备(可带自动稀释)如Nicomp Z3000(2) 水:将蒸馏水透过一个0.2μm的滤膜过滤,通过超声去除里面的气泡,或者用保存在玻璃容器中注射用的无菌水。(3) 标准粒子:可溯源的苯乙烯乳液标准粒子或其他合适的纳米球。100nm,250nm和400nm三种不同尺寸标准的粒子4) 样品稀释浓度:采用什么样的最 佳稀释方案以达到适当的散射强度为基础来分析是由仪器的规格决定的。因此,最 终样品中乳胶的浓度必须根据所使用的动态光散射设备决定。(5) 系统适应性通过标准:按照标准操作测量,得到样品光强径平均粒径以及相关标准偏差。该系统适用于当样品达到稳定温度后,结果稳定,并且平均三次测量平均粒径的结果。变异系数不能超过NIST-可追溯平均粒径的10%。尾端大颗粒(1)仪器:采用合适的具有或没有自动稀释的并且由计算机控制操作的光阻法仪器进行测量。如Accusizer A7000 APS(2)水:将蒸馏水透过一个0.2μm的滤膜过滤,通过超声去除里面的气泡,或者用保存在玻璃容器中注射用的无菌水。(3)标准粒子:可溯源的苯乙烯乳液标准粒子或其他合适的纳米球。光阻法仪器的粒径测量与计数准确性要通过两个不同的标准混合粒子5和10μm混标获得。(4)样品稀释浓度:不带有自动稀释的仪器需手动进行稀释。配备了自动稀释系统,浓缩的样品可以通过注射器或者特氟隆样品线直接进入仪器进行分析,然后自动稀释,优化液滴浓度进行分析。(5)系统适应性通过标准:设置仪器的阈值为1.8μm,上限延申至50μm. 重复三次测量标准粒子的粒径与每毫升数量。相关结果的平均粒径应该符合标粒的期望值,相对标准偏差在10%以内,粒径准确度在90%到110%以内。另外,粒子每毫升颗粒数应该与标准粒子浓度偏差在10%以内。(6)样品通过标准:将仪器的阈值设定为1.8μm,上限延申至50μm。在任何情况下,只要测量5μm粒径以上的粒子数足够多,它就代表了样品中由足够多的球状粒子,这些粒子在统计学上代表了原生乳液中的尾端大粒子。大于5μm的乳粒加权总体积占油相体积的百分比,其结果不得超过0.05%。3、Nicomp Z3000 & Accusizer A7000 APS奥法美嘉旗下的Nicomp Z3000 & Accusizer A7000 APS型号设备是典型的动态光散射法和光阻法原理的设备,采用Nicomp 、SPOS单颗粒光学传感技术,通过对样品的准确分析,集检测、数据处理及自动冲洗等功能一体,操作便捷、高效。Nicomp Z3000相比于其他厂家的DLS设备,在常用的高斯分布下,又用自己独特的Nicomp算法,可准确分辨出样品是否属于多峰,给客户提供准确的数据,满足客户的需求。Nicomp Z3000可以检测0.3nm-10μm的准确粒径分布。Accusizer A7000 APS采用SPOS单颗粒光学传感技术,通过对样品进行自动稀释,有效避免了人工操作导致的检测误差,集检测、数据处理及自动冲洗等功能一体,操作便捷、高效。使用Accusizer APS光学粒度分析仪测试5μm和10μm的混合标粒(批号:UH13A),结果如下图所示:参考资料USP 729脂质注射乳剂中球状大小分布
227人看过
- 2025-09-28 17:15:20位置传感器怎么检测
- 在现代技术的飞速发展中,位置传感器作为一种重要的传感器设备,广泛应用于自动化控制、机器人、智能硬件等多个领域。它们的核心作用是精确检测物体的相对或位置,并将这些信息反馈给系统,帮助进行进一步的控制与操作。位置传感器是如何进行检测的呢?本文将详细探讨位置传感器的工作原理、常见类型及其在不同应用场景中的重要作用,旨在帮助读者深入了解该技术。 位置传感器的工作原理 位置传感器通过监测物体的位置变化,利用不同的测量原理和技术,精确地获取物体在空间中的位置坐标。常见的工作原理包括电磁感应、光学传感、激光测距、超声波测距、以及机械式位移检测等。每种原理都有其独特的优势和适用场景。 电磁感应原理:电磁感应传感器通过监测目标物体的电磁场变化来检测位置。例如,线性电位计便利用了这一原理,能够精确地测量物体在一维空间中的位置变化。 光学原理:光学位置传感器则通过发射激光或红外光,检测光束与目标物体之间的反射或折射变化来确定物体的位置。这类传感器在精密控制系统中常被应用,具有较高的精度和响应速度。 激光测距:激光位置传感器通过发射激光束并计算激光从物体表面反射回来的时间,来确定物体的精确位置。这种技术在自动化设备和机器人中得到了广泛应用。 超声波测距:超声波位置传感器通过发射超声波并计算其回声反射的时间来测量目标物体的位置。这种技术常用于液位检测、距离测量等场合,具有良好的环境适应性。 机械位移传感:通过直接的物理接触或感应,机械位置传感器能够感知物体的位移变化。例如,编码器就是通过旋转元件的变化来检测角度或线性位置。 常见的类型与应用 线性位置传感器:这类传感器用于检测物体沿直线方向的位移变化。其应用广泛,如自动化生产线中的定位、液位传感器、以及机器人手臂的精确控制等。 角度位置传感器:用于检测物体旋转或角度变化。这种传感器在各种机械设备中都得到了应用,比如机器人关节角度检测、汽车转向系统、以及运动控制系统等。 接近传感器:接近传感器能够检测物体是否接近传感器的感应区域,常用于自动门、安防设备及机器人系统等场合。 GPS传感器:在大范围的定位应用中,GPS传感器具有重要地位,广泛应用于车辆导航、无人机、以及物流运输中。通过卫星信号,GPS能够为物体提供地理位置坐标,帮助进行精确导航。 位置传感器的优点与挑战 随着技术的不断进步,位置传感器的精度、响应速度以及稳定性都得到了显著提升。它们具有许多独特的优点: 高精度与高灵敏度:现代位置传感器在极小的误差范围内能够进行的测量,能够满足高精度测量的需求。 响应速度快:许多位置传感器能够实时反馈物体的位置变化,使得控制系统可以快速响应,实现更高效的操作。 广泛适应性:无论是在工业环境中,还是在复杂的自然环境中,位置传感器都能够稳定工作,具有较强的环境适应性。 尽管位置传感器具有诸多优点,仍面临着一些挑战。例如,高精度传感器的成本较高、工作环境的干扰因素(如温度、湿度、电磁干扰等)可能会影响其稳定性,以及不同类型的传感器在精度与成本之间的平衡问题。 总结 位置传感器在许多领域中的应用已经成为现代工业和智能设备不可或缺的一部分。通过不同的工作原理和技术,位置传感器能够实现精确的定位与测量,推动着自动化控制、机器人技术等领域的快速发展。随着技术的不断革新,未来位置传感器将在更多场合发挥其重要作用。对于那些在设计和选择位置传感器的工程师来说,理解不同类型传感器的工作原理、应用场景以及技术挑战是至关重要的,这有助于在实际应用中做出更加的选择。
83人看过
- 2025-09-28 17:00:22温度记录仪怎么检测
- 温度记录仪在现代科技和工业应用中扮演着重要角色,特别是在需要对温度变化进行监控和记录的场景中,如药品存储、食品运输、实验室研究等领域。如何通过温度记录仪进行有效的温度检测,已成为许多行业关注的。本篇文章将深入探讨温度记录仪的工作原理、检测方法以及如何选择适合的设备,帮助大家更好地理解温度监测技术的应用和优势。 温度记录仪的基本原理 温度记录仪是一种能够记录和监控温度变化的设备,它通常由传感器、数据存储装置和显示接口组成。传感器负责感知周围环境的温度变化,将温度信号转换为电信号;数据存储装置则将这些温度数据存储在设备内部,通常采用内存卡、闪存或其他存储介质;显示接口则可以展示实时温度,帮助使用者了解当前的温度状态。 现代温度记录仪往往配备了多个传感器,这些传感器的工作原理通常基于热电偶、热敏电阻或其他热学原理。根据传感器的不同,温度记录仪可以提供不同的温度范围、精度和响应速度。由于温度变化直接影响到许多产品的质量和安全,因此,准确的温度记录显得尤为重要。 温度记录仪的检测过程 温度记录仪的检测过程主要包括以下几个步骤:选择合适的设备、安装传感器、设置监控参数、开始记录数据以及分析和保存数据。 选择合适的设备 在选择温度记录仪时,需要根据实际需求来决定设备的型号、传感器类型以及监控范围。例如,如果是在极端温度环境中使用,需要选择温度范围更广的记录仪;如果需要高精度的温度数据,精度更高的设备就显得尤为重要。 安装传感器 温度记录仪的传感器需要安装在合适的位置,以确保其能够准确地感应到目标温度的变化。安装时应避免传感器被外界干扰,确保数据的准确性。 设置监控参数 温度记录仪一般可以设置温度上限和下限,以及记录时间间隔等参数。根据具体应用场景,合理设置这些参数,有助于更好地监控温度变化,及时发现异常。 开始记录数据 设置好后,设备开始自动记录温度数据。记录仪会以设定的时间间隔对温度进行采样,并存储这些数据供后续查看。 分析与保存数据 数据记录完成后,通过连接计算机或其他设备,可以对温度数据进行进一步的分析,查看是否有任何异常变化。温度数据也可以导出保存,供今后的查验和分析使用。 如何确保温度检测的准确性 要确保温度记录仪检测的准确性,首先需要选择高质量的设备,并确保设备的校准准确无误。设备在使用前,应该定期进行校准,以排除因传感器老化或误差导致的数据偏差。 传感器的放置位置至关重要。如果传感器放置不当,可能导致检测到的温度数据不具代表性,因此要根据实际需求选择合适的安装位置,避免周围环境的干扰。 温度记录仪的电池寿命、数据存储容量等也是需要关注的因素。电池电量不足或存储空间满可能导致温度记录中断或丢失。因此,定期检查设备的电量和存储状态,确保记录过程的连续性和完整性。 选择温度记录仪的注意事项 在选择温度记录仪时,有几个关键因素需要特别注意: 温度范围与精度 根据实际使用需求,选择适合的温度范围和精度。不同的应用领域对精度的要求不同,有些场合需要高精度的温度记录仪,而有些则不需要过高的精度。 数据存储与传输功能 数据存储容量和数据传输方式也是选购时要考虑的因素。一些高端型号可以通过蓝牙、Wi-Fi等无线方式实时上传数据,方便远程监控。 设备的稳定性与耐用性 在复杂环境下使用的温度记录仪需要具备较高的稳定性和耐用性,能够承受高温、低温、湿气等环境影响。 用户界面与操作便捷性 用户界面的友好性和操作的简便性也是考虑的重要方面,特别是当设备需要频繁调试或查看数据时,简洁易用的操作系统能大大提升使用体验。 总结 温度记录仪作为一种重要的温度监测工具,广泛应用于多个行业领域。通过选择合适的设备、合理的安装与设置,可以有效提高温度监控的精度与可靠性。无论是在药品、食品、科研实验,还是工业生产中,温度记录仪的作用都不容忽视。选择合适的设备并进行科学合理的使用,能够确保温度数据的准确记录,为生产与安全管理提供坚实的基础。
90人看过
- 2025-09-28 17:00:22涡旋混合器怎么检测
- 涡旋混合器在化工、生物制药、食品检测以及实验室日常工作中应用广泛,它利用高速旋转产生的涡流作用,使液体、悬浮物或粉末样品能够快速均匀混合。为了保证混合效果稳定、设备运行安全与使用寿命,定期检测涡旋混合器就成为必不可少的工作。本文将围绕涡旋混合器检测的流程、方法以及判定标准进行深入解析,为实验室及生产线技术人员提供具有实用价值的参考。 一、检测的目的与意义 涡旋混合器在长时间运转之后,可能会出现转速下降、振动异常、噪音加剧或混合效果降低等问题。检测的目的主要包括: 确保混合均匀性:评估设备是否能够在规定时间内让样品达到预期混合标准。 保障操作安全:避免因轴承磨损、马达故障导致设备突然停止或出现危险。 延长使用寿命:及时发现零部件老化情况,减少因故障停机造成的经济损失。 符合行业质控要求:确保实验室或生产线数据的精准性和可重复性。 二、检测前的准备工作 在开始检测以前,需要做好以下准备: 断电处理:确保设备在断电状态下进行零件检查,避免触电或误触启动。 环境检查:确认检测环境平稳,无过度潮湿或粉尘干扰。 工具准备:如转速测试仪、噪音计、振动分析仪、电压表等检测工具准备齐全。 记录表格:提前设计检测记录表,用于记录每个检测环节的参数及结果。 三、检测的主要方法 1. 转速检测 利用转速测试仪测量涡旋混合器的实际工作转速。与设备说明书标称转速进行对比,如果偏差超过±5%,则需检查电机与调速控制系统。 2. 振动与噪音检测 使用振动分析仪和噪音计分别测量振动频率与分贝值。振动过大通常是因为底座橡胶垫老化或偏心轴磨损,噪音则可能与马达轴承缺油或损坏有关。 3. 混合均匀性检测 在同样条件下准备等体积的样品,混合后滴取样品进行显色或浓度检测,通过数据偏差判断混合效果是否达标。 4. 电气性能检测 使用电压表测量设备运行时的电压与电流,判定是否在额定范围。电气异常可能导致马达转速不稳甚至烧毁。 5. 外观与结构检查 包括检查底座、夹具、旋钮、外壳是否有裂痕、松动或腐蚀。对于实验室频繁使用的设备,结构稳定是检测的之一。 四、检测周期与记录管理 涡旋混合器的检测周期取决于使用频率与工作强度。日常实验室通常三到六个月进行一次全面检测,生产线高频使用则建议一个月检测一次。检测结果必须形成记录,存档备查,并在发现异常时及时安排维修或更换零部件。 五、优化建议 选择质量稳定、售后完善的品牌设备,可以减少检测频率。 为设备配置防尘罩或防潮措施,延缓老化速度。 按厂家说明进行润滑与维护,确保零件运转顺畅。 定期培训操作人员,避免因误操作导致设备损耗。 通过科学的检测方法,不仅能够保障涡旋混合器的混合质量,还能提前预防设备故障,降低停机风险。在实验室和工业生产中,检测不是额外的负担,而是一种保障效率与质量的专业手段。
85人看过



