2025-01-21 09:33:29原位电离技术
原位电离技术是一种在样品原位进行电离的技术,无需样品预处理或转移,可直接在样品表面或内部产生离子。它提高了分析的灵敏度和准确性,同时简化了分析流程。该技术广泛应用于质谱分析领域,特别是在生物样品、环境污染物及材料科学等方面的研究中。通过原位电离,科学家们能够更直接地获取样品信息,揭示样品的化学组成及空间分布特征,为科学研究提供了强有力的技术支持。

资源:4470个    浏览:63展开

原位电离技术相关内容

产品名称

所在地

价格

供应商

咨询

化学电离气体净化器
国外 美洲
面议
上海希言科学仪器有限公司

售全国

我要询价 联系方式
联用技术
国外 美洲
面议
珀金埃尔默企业管理(上海)有限公司

售全国

我要询价 联系方式
气体电离探测器GED
国外 亚洲
面议
深圳市蓝星宇电子科技有限公司

售全国

我要询价 联系方式
紫外真空电离器 L12542
国外 亚洲
面议
滨松光子学商贸(中国)有限公司

售全国

我要询价 联系方式
紫外真空电离器 L12542
国外 亚洲
面议
滨松光子学商贸(中国)有限公司

售全国

我要询价 联系方式
2022-12-06 13:04:21探秘肿瘤微环境,原位“看透”细胞因子
细胞因子是肿瘤微环境(Tumor Microenvironment,TME)中细胞通讯的关键介质,在癌症的发生、发展、治 疗和预后等多个方面发挥重要作用。在过去的 40 年中,细胞因子和细胞因子受体作为癌症靶点或癌症治 疗方法得到了广泛的研究。目前公认的临床前治 疗策略为增强干扰素和白细胞介素(包括 IL-2 ,IL-7 ,IL-12 和 IL-15 )的生长抑 制和免疫刺激作用,或抑 制细胞因子(如 TNF ,IL-1β 和 IL-6 )的炎症和促进肿瘤的作用[1]。图 1 . 细胞因子在肿瘤微环境中的作用特定细胞因子的表达也与肿瘤细胞的高存活率和高转移性密切相关。其中促炎细胞因子 IL-6 和 IL-8 与多种癌症相关,包括淋巴瘤、黑色素瘤、乳腺癌、前列腺癌和结肠直肠癌等 [2,3]。因此,分析细胞因子的表达是一种重要的诊断工具和预测癌症预后的关键因素。非放射性的 RNA 原位杂交技术(ViewRNA ISH)是一种高灵敏度的检测细胞因子表达的有效方法,并且可以对 1 至 4 个 mRNA 目标进行多重分析。检测原理如下图所示:图 2 .  ViewRNA ISH 检测原理安捷伦BioTek Cytation 5 多功能细胞成像微孔板检测系统,可容纳多达四个荧光通道同时成像,快速并出色地成多色荧光成像。仪器配备的高内涵分析软件可自动计算细胞内 RNA 的表达水平。Cytation 5 活细胞成像工作站结合ViewRNA ISH,为细胞因子研究提供了一种高效率、高灵敏度和可重复的检测方法。实验案例分享 实验一.细胞因子mRNA的成像和分析 为研究细胞因子mRNA 在不同营养条件下的表达情况,设置两组对照实验。阳性对照细胞培养于完全培养基中,而阴性对照细胞经过 18 小时的血清饥饿处理。随后加入 ViewRNA 探针以标记 IL-6 、IL-8 和 ACTB mRNA ,在Cytation 5 上分别使用 RFP 、GFP 、Cy5 和 DAPI 通道对探针进行成像完成 ISH 细胞分析。图像结果表明:细胞因子mRNA 的表达在营养匮乏的条件下会显著降低。图 3 . 阳性和阴性对照组成像。HCT116 放大 20 倍图像作为( A )阳性对照和( B )阴性对照。MDA-MB-231 细胞放大 40 倍的图像作为( C )阳性对照和( D )阴性对照。蓝色:DAPI 染色的细胞核;绿色:标记 IL-8 mRNA ;橙色:标记 IL-6 mRNA ;红色:标记 ACTB mRNA 。接下来为了定量分析细胞因子表达,首先在 Cytation 5 的 DAPI 通道下进行细胞核计数,以确定每孔的细胞数量(图 4A )。然后分别在GFP 、RFP 通道进行细胞因子探针( IL-6 或 IL-8 )的荧光信号分析(图 4B )。通过细胞荧光信号的比率评估不同实验条件下的细胞因子表达(图 5 )。图 4 . 每个细胞的荧光信号分析。( A ) 使用 Agilent-BioTek Gen5 软件进行细胞分析圈选出 DAPI 标记的细胞核;( B ) 荧光标记的 IL-8 信号的图像分析。如图 5 所示,使用 ViewRNA ISH 和 Cytation 5 这一组合准确的量化了细胞内 IL-6 和 IL-8 mRNA 的表达。图 5 . MDA-MB-231 细胞中 IL-8 表达和 HCT116 细胞中 IL-6 表达,并以细胞数目进行校正。 实验二.诱导细胞因子 mRNA 的表达 使用不同剂量的 IL-1β 刺激 DU145 细胞,以分析细胞因子的 mRNA 的表达(图6)。图 7 结果显示:虽然 IL-6 和 IL-8 的 mRNA 表达增加,但 IL-8 的表达变化更为显著,这与先前研究结果一致[4]。IL-1β 的最 高剂量下,这两种细胞因子的表达减少则是由于细胞毒性。这验证了该检测方法的可行性与稳定性。图 6 . 不同浓度的 IL-1β 刺激下的 IL-6 、IL-8 和 ACTB 荧光 mRNA 探针信号 ( A ) 0 ng/mL;( B ) 0.02 ng/mL ;0.128 ng/mL;( D ) 0.8 ng/mL。蓝色:DAPI染色的细胞核;绿色:标记的IL-8 mRNA;橙色:标记的 IL-6 mRNA ;红色:标记的 ACTB mRNA 。图 7 . 不同浓度的 IL-1β 刺激下 DU145 细胞中 IL-6 和 IL-8 mRNA 的表达。 实验三.抑 制细胞因子 mRNA 的表达 研究表明丝裂原活化蛋白激酶( MAPK )可调节 IL-8 ,并证明用 MAPK/ERK 抑 制剂 U 0126 治 疗可减少 DU145 和 MDA-MB-231 细胞中的炎症细胞因子[4,5]。为了确认这一现象并验证 ViewRNA ISH 和 Cytation 5 这一组合的能力,将不同浓度的 U 0126 加入到每种细胞类型中孵育 30 分钟。然后用 1 ng/mL 的 IL-1β 刺激 DU145 细胞达 3 小时,而 MDA-MB-231 细胞未被刺激。使用 GFP 和 RFP 通道进行细胞计数和图像分析以评估在 U 0126 治 疗后 IL-8 和 IL-6 细胞因子 mRNA 的表达。采集的图像(图 8 )和计算的荧光信号强度 (图 9 )证实了 U 0126 的抑 制作用。此外,也验证了该方法的灵敏度,可以准确识别给予抑 制剂后 mRNA 的表达变化。图 8. U 0126 抑 制 IL-8 mRNA 的表达。图像显示了在不同浓度的 U 0126 处理后 ( A-E ) MDA-MB-231 细胞内 IL-6 、IL-8 和 ACTB 荧光 mRNA 探针信号;( F-J ) 为 DU145 细胞。蓝色:DAPI 染色的细胞核;绿色:标记的 IL-8 mRNA ;橙色:标记的 IL-6 mRNA ;红色:标记的 ACTB mRNA 。图 9 . U 0126 治疗后 IL-8 和 IL-6 mRNA 在 MDA-MB-231 和 DU 145 细胞中的表达结 语ThermoFisher 的 ViewRNA ISH 细胞分析试剂盒和探针提供一种灵敏的方法来检测 mRNA 表达。该方法在安捷伦BioTek Cytation 5 细胞成像系统的加持下得以更更快地采集多荧光通道的图像,并更精 准的计算出每一个细胞的荧光信号强度。这种检测、成像和分析的完 美结合提供了一种灵敏、灵活和高通量的方法用以检测细胞因子 mRNA 的表达。参考文献:[1] Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022 Apr;19(4):237-253.[2] Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M. Immunotherapeutic Interleukin-6 or Interleukin-6 Receptor Blockade in Cancer: Challenges and Opportunities. Curr Med Chem. 2018;25(36):4785-4806.[3] Vecchi L, Mota STS, Zóia MAP, Martins IC, de Souza JB, Santos TG, Beserra AO, de Andrade VP, Goulart LR, Araújo TG. Interleukin-6 Signaling in Triple Negative Breast Cancer Cells Elicits the Annexin A1/Formyl Peptide Receptor 1 Axis and Affects the Tumor Microenvironment. Cells. 2022 May 20;11(10):1705.[4] Kooijman R, Himpe E, Potikanond S, Coppens A. Regulation of interleukin-8 expression in human prostate cancer cells by insulin-like growth factor-I and inflammatory cytokines. Growth Horm IGF Res. 2007 Oct;17(5):383-91.[5] Chelouche-Lev D, Miller CP, Tellez C, Ruiz M, Bar-Eli M, Price JE. Different signalling pathways regulate VEGF and IL-8 expression in breast cancer: implications for therapy. Eur J Cancer. 2004 Nov;40(16):2509-18. 
392人看过
2023-04-12 16:50:58焦耳加热装置-焦耳热加热器-合肥原位科技
合肥原位科技焦耳加热装置,针对导电材料,科学家可利用其自身的焦耳效应,对其施加电气环境;针对非导电材料,则可通过我司配备的各类耐高温极速加热样品台进行加热,从而使材料在极短的时间内(0~10 S)达到极高的温度(1000~3000 ℃),升温速率最快可达到10000k/s。通过对材料的极速升温,可考察材料在极端环境、剧烈热震情况下的物性改变。该产品目前广泛应用在电池、催化、陶瓷、金属材料等领域,可通过极速升降温制备纳米尺度颗粒,单原子催化剂,高熵合金等。装置可定制电气环境及真空系统。配件包含:控制柜、真空腔、电极、真空泵、高温样品台、测温探头、适配线缆。合肥原位科技有限公司已构建原位表征系统解决方案(含测试)、催化剂评价装置及焦耳加热装置三大主营产品体系,可满足众多用户对于多环境原位表征的需求,同时为客户提供原位测试工作。目前已与国内270余家知名高校、科研单位建立了各类联络机制。联系我们,请登录“合肥原位科技有限公司”,欢迎咨询。
274人看过
2022-04-01 16:35:59低场核磁弛豫技术用于CMP抛光液的原位分散性检测
低场核磁弛豫技术用于CMP抛光液的原位分散性检测CMP 全称为 Chemical Mechanical Polishing,即化学机械抛光。该技术是半导体晶圆制造的必备流程之一,对高精度、高性能晶圆制造至关重要。抛光液的主要成分包括研磨颗粒、PH值调节剂、氧化剂、分散剂等。从成分中我们就大概知道了抛光液是一种对分散要求很高的纳米材料悬浮液,所以研磨过程中对颗粒的尺寸变化以及颗粒在悬浮液中的分散性都有着极其严苛的要求。低场核磁弛豫技术用于悬浮液中颗粒尺寸变化和颗粒分散性检测低场核磁弛豫技术以水分子(溶剂)为探针,可以实时检测悬浮液体系中水分子的状态变化。低场核磁弛豫技术可以区分出纳米颗粒与溶剂的固液界面间那一层薄薄的表面溶剂分子,当颗粒尺寸或颗粒分散性发生变化时,颗粒表面的溶剂分子也会发生相应的变化。低场核磁弛豫技术可以灵敏的检测到这这种变化状态和变化过程,从而可以快速地评价例如抛光液以及相关悬浮液样品的分散性和悬浮液中颗粒尺寸的变化过程。低场核磁弛豫技术与传统氮气吸附法有哪些差异?在低场核磁弛豫技术还未应用于抛光液领域之前,最常用的方法是用氮气吸附法来表征颗粒的比表面积。但是在实际的研发与生产过程中,研究人员发现就算氮气吸附法表征的研磨颗粒的比表面积非常稳定,抛光过程中还是会发生抛光液性能不稳定的情况。而这种情况很可能是研磨颗粒在溶剂体系中发生了团聚,进而发生了尺寸上的变化而导致zui终研磨性能的问题。低场核磁弛豫技术可直接用于研磨液原液的分散性检测,可以快速评价悬浮液体系的分散性而被广泛应用于CMP抛光液的研发与生产控制中。低场核磁弛豫技术还能用于哪些领域?低场核磁弛豫技术除了用于半导体CMP抛光液,还可以用于国家正大力扶持的新能源电池浆料,光伏产业的导电银浆,石墨烯浆料,电子浆料等新材料领域。这些方向都非常适合采用低场核磁弛豫技术来研究其原液的分散性、稳定性。低场核磁弛豫分析仪:
250人看过
2022-12-04 20:10:14光 气“在线产生原位消耗”——连续光化学反应
欢迎您扫描二维码获取资料研究背景在连续流工艺中,原料化合物在极小的空间内进行快速混合和换热,并在精确控制反应温度、压力的情况下,在极短的时间内完成反应。因此,对于常规下需要小心处理的反应体系,如产生剧烈放热、爆炸风险高的反应(自由基反应,光化学反应等)或使用剧毒化学品的反应,连续流反应系统适用性更高。光 气的连续在线制备光 气(COCl2)是一种非常重要的有机中间体,具有很高的反应活性,但同时毒性极高。本文作者研究了一种新的流动光化学方法,以CHCl3和氧气(O2)在光照下在线制备COCl2,获得96%的收率。这个连续流动反应系统可以合成有价值的氯甲酸酯,碳酸酯和聚碳酸酯。图1. 反应流程及装置图如上图所示,反应器由12个石英玻璃管和一个40 W的低压水银灯作组成,总持液体积12.1ml。氯仿(CHCl3) 通过注射泵注入,氧气(O2)通过质量流量控制器(MFC)输送,两股物料混合时并伴有90℃加热至气态,混合气体进入光化学反应器中(反应器温度50℃),在一定波长下,在线生成光 气,然后进一步与醇类底物进行反应得到目标产物。研究过程一.工艺参数筛选作者以正丁醇为底物筛选出光 气的最 优反应条件,从反应器出口得到的光 气进一步与丁醇反应,得到产物1a和2a,并通过核磁来计算反应收率。筛选条件时,通过控制氯仿和氧气的物料流速来调整反应时间(exposure time)以及反应配比,得到的结果如下图所示。表1.工艺参数筛选实验结果二. 半连续方式进行底物拓展在筛选出最 优的制备光 气条件后,作者尝试不同醇类作为底物,以半连续的方式(光 气采取连续流反应制备,碳酸酯采取釜式搅拌制备)进行碳酸酯的合成,均获得了不错的收率,其中部分底物收率最 高可达98%,结果如下。图2. 半连续反应流程图三. 全连续方式制备碳酸酯作者进一步将整个系统构建为全连续化,在有/无溶剂,有/无有机碱以及不同有机碱的体系下拓展了反应底物,结果如下。表2.全连续制备碳酸脂结果可以看出,将整个系统整合成全连续过程,可以达到较好的收率。全连续化的实现也能大大增加化学反应的可靠性,稳定性和安全性。总结通过连续流光化学反应器在线制备光 气是可行的;结合半连续和全连续反应系统,能成功地完成各类碳酸酯和氯甲酸酯的合成。参考文献:Org. Process Res. Dev,November 11, 2022
435人看过
2020-12-29 15:26:01技术分享|原位检测与过程分析技术及应用(一)
Paal-Knorr 反应机理研究原位检测与过程分析01 技术平台原位检测与过程分析(以下简称ICPA)技术平台是以RC HP-1000A型反应量热仪为基础,并搭载在线分子光谱仪、在线粘度计、在线pH计、在线颗粒度检测仪等探头式原位检测仪器的高技术多参量测控平台。通过对上述仪器组件在硬件与软件层面的集成,可实现化学反应工艺过程模拟、多参量测控、数据分析与联用等功能。其中,ICPA技术平台的多参量测控功能可原位采集化学反应过程中体系温度、压力、反应热、组分、pH值、粘度和颗粒度等参量的实时数据,从而GX获取化学反应特征信息。由于无须进行取样、样品前处理等操作,与传统的离线分析手段相比,ICPA技术具有不破坏样品、不引入干扰因素、不丢失过程信息等优势,可用于反应机理研究、反应风险评估、工艺参数快速优化等。另外,由于具备高自动化、高数据通量的特点,该技术是未来实现全自动化实验室、智能工厂的重要基础。图1  原位检测与过程分析技术平台组成图2  原位检测与过程分析技术平台拓扑结构02 应用实例有机化学中从1,4-二羰基化合物产生吡咯、呋喃或噻吩的反应称为Paal-Knorr反应。取代的吡咯、呋喃和噻吩是许多具有生物活性的天然产物和药物活性成分(APIs)的基本结构单元,因此Paal-Knorr反应是一类比较有价值的合成方法。对于利用胺类与1,4-二羰基衍生物合成吡咯的Paal-Knorr反应,一般认为半缩醛胺中间体的环化是反应的决速步骤,因此测定该中间体的生成与变化是研究反应机理的关键。图3  Paal-Knorr吡咯合成反应机理本实验以2,5-己二酮为底料、滴加乙醇胺的方式进行Paal-Knorr吡咯合成。利用ICPA技术平台分子光谱(中红外)原位检测功能,可表征反应过程中体系红外吸收光谱随时间变化。通过对全谱图进行基线校正和特征峰趋势分析,可以识别出反应体系各组分浓度的变化,其中波数1110 cm-1处的吸收峰呈现先上升后下降的趋势,且符合仲胺基上C-N键的伸缩振动峰位置,可初步识别为半缩醛胺中间体的特征峰。图4  (a) Paal-Knorr吡咯合成反应红外光谱随时间变化;(b) 关键特征峰变化趋势利用特征峰强度变化可对反应物、产物和中间体的浓度及相对浓度变化过程进行半定量分析。可以发现,反应物和产物的相对浓度之和在1110 cm-1吸收峰出现前后恒等于1,且在反应过程中出现的下降趋势与1110 cm-1吸收峰的变化趋势相吻合。由此可以确认1110 cm-1是半缩醛胺中间体的特征峰。图5  反应物、产物、中间体相对浓度变化趋势确认中间体的特征峰之后,可以通过原位采集红外数据GX研究工艺条件对反应过程的影响。如图6所示,提高反应温度会YZ中间体的生成,验证了半缩醛胺中间体脱水是Paal-Knorr反应的决速步骤,温度对这一步反应速率的影响更显著;另外,投料顺序也影响反应过程,以乙醇胺为底料、滴加2,5-己二酮的反应方式没有明显的中间体生成。图6  (a)反应温度与(b)投料顺序对中间体生成的影响03 结语ICPA技术是现代测控技术、仪器科学和现代计量学的结合体,是研究化学反应机理与工艺开发的新兴手段。后续我们将介绍更多ICPA检测方法以及该技术在医药、农药、聚合物、新能源等行业研发与生产中的应用实例。
581人看过
多功能酶标仪
工业硅酸钠中氧化钠
天美79系列气相色谱
单面平衡机
基本过程控制系统
THz-QCL
SevenDirect pH计
台式X射线荧光光谱仪
微生物生长曲线仪
尺寸排阻色谱法
安捷伦 ICP-OES 系统
银耳中米酵菌酸测定
锂电池电镜制样方法专题
传统激光器
便携式粉尘快速检测仪
Empower色谱数据系统
电导率测量
多变量分析
考古材料检测分析
CIC-D300离子色谱仪
安全仪表系统
原位电离技术
电位表征技术
CIC-D150离子色谱仪
紫外与氧化剂氧化
Flexacam C3 摄像头
质谱成像技术
紧凑型空气质量监测仪
放射免疫法
医疗器械流量测试仪
锂电池材料
环境监控解决方案
土壤元素分析
GC 8890 智能气相色谱
康宁AFR
水污染检测