2025-01-10 17:02:33独特微纳加工技术
独特微纳加工技术是一种创新性的微纳尺度制造技术。它利用先进的工艺和设备,在微米或纳米尺度上对材料进行精确加工和操控。该技术具有高精度、高效率和高灵活性等特点,能够实现复杂微纳结构的制造和定制化生产。独特微纳加工技术在半导体、生物医学、光学器件等领域具有广泛应用,为科技进步和产业发展提供了重要支撑。

资源:15658个    浏览:48展开

独特微纳加工技术相关内容

产品名称

所在地

价格

供应商

咨询

Nanoscribe 3D微纳加工技术应用于材料工程领域
国外 欧洲
面议
纳糯三维科技(上海)有限公司

售全国

我要询价 联系方式
微纳光纤定制加工
国外 亚洲
面议
筱晓(上海)光子技术有限公司

售全国

我要询价 联系方式
SPG微纳气泡发生技术
国外 亚洲
面议
北京嘉盛兴业科技有限公司

售全国

我要询价 联系方式
Nanoscribe 3D微纳加工应用于生命科学领域
国外 欧洲
面议
纳糯三维科技(上海)有限公司

售全国

我要询价 联系方式
Nanoscribe超高速双光子灰度光刻技术微纳3D打印设备
国外 欧洲
面议
纳糯三维科技(上海)有限公司

售全国

我要询价 联系方式
2023-02-05 09:13:27纳克微束祝您元宵节快乐!
万家灯火,欢乐元宵!纳克微束祝大家好梦皆圆!
156人看过
2023-04-11 15:32:26客户成就 |用于细胞支架的任意形状颗粒的流体微纳加工和组装
一种全新的微纳加工概念推动了微流体系统中颗粒的可扩展性和连续加工制造和组装。德国亚琛工业大学的科学家们利用Nanoscribe公司2PP三维打印技术开发并演示了一种新的流动、通道集成、连续生产工艺,用于超小、任意形状的 3D 颗粒制造。打印过程展示了在 72 小时内连续运行制造 150,000 个颗粒。2PP技术所具备的高设计自由度、高形状精度和材料的灵活性允许制造具有不同形状、微米尺寸、亚微米特征和各种材料的颗粒。该研究旨在将这种颗粒组装方法应用于细胞组织工程应用,并扩大了制造自调节、响应性和可渗透 3D支架的范围。毫米级和微米级颗粒可灵活应用于化学和生化反应器所需的支架上。生物反应器用于固定和分析反应器内部结构表面上的酶、细胞或微生物,其性能的关键是能够调整影响生物反应特性的颗粒的性质。为了拓展这一应用,来自亚琛工业大学RWTH Aachen University和德国亚琛DWI-莱布尼茨互动材料研究所DWI - Leibniz Institute for Interactive Materials的科学家们提出了一种双光子连续垂直流动光刻的新型微纳加工概念,实现了对具有复杂形状、微米尺寸和亚微米特征的颗粒进行高通量微纳加工,从而使尺寸约为20μm的微粒在表面的相互作用下进行自组装3D支架。在研究中,科学家们还使用各种颗粒形状、尺寸和材料分析了 3D 组件的渗透阻力和堆积密度。 将3D打印的任何形状颗粒的逐层自组装过程在建筑脚手架上进行可视化想象。颗粒的相互作用及其组装方式取决于颗粒在形状、材料、电荷、柔软度和溶剂润湿性等方面的性质。颗粒的自组装过程取决于颗粒之间的各种效应,且这仍然是一项具有挑战性的任务。图片来自于德国亚琛工业大学微粒的流动打印但是如何在微流体通道内进行微粒的流动打印呢?答案的关键就是双光子聚合(2PP)技术。双光子在xy平面上进行扫描的同时流体树脂流沿z方向连续传输已打印的xy切片。一旦一个颗粒完成,下一个颗粒就会在连续打印过程中以相同的方式进行制作。使用 Nanoscribe 的 DeScribe 软件和 phyton 脚本调整输出文件,可以对具有复杂几何形状的各种设计进行切片并准备用于流体打印。流体打印过程是连续的,因此可以在数小时内生产数千个颗粒,实现在 72 小时内打印多达 150,000 个颗粒。基于2PP三维打印所特有的极大设计自由度,可以生产任何形状的颗粒。与基材打印相比,颗粒的流动打印具有明显优势,可是实现连续制造一个接一个的颗粒,制造两个颗粒之间无需任何等待时间。在逐层打印时,流动打印方法还绕过了载物台的 z 移动,因为正是流动在 z 方向上传输 xy 切片。因此,流动打印代表了制造小而复杂形状颗粒的速度提高。 图片展示了2PP流体打印过程。激光在xy平面上进行扫描,而液态树脂沿z方向流动,连续传输已打印的xy切片。该过程在单个颗粒完成后重复。图片来自于德国亚琛工业大学颗粒组装应用于3D生物混合组织小于100μm的颗粒在进行自组装后可形成复杂的细胞支架,该支架的反应特性可以在调整颗粒形状、大小、孔隙率和材料特性时做相应调整。这极高的灵活性非常适合用于创造细胞培养和组织工程的支架。调整颗粒几何形状会影响表面体积比,从而定制穿过及围绕结构周围的流体动力学。然而,在运用流动自组装生产支架时,控制颗粒组织过程仍然存在挑战。 为了研究3D生物混合组织,科学家们研究了小鼠成纤维细胞培养物与使用Nanoscribe无细胞毒性IP-Visio光刻胶进行打印的颗粒物的相互作用,该光刻胶具有低荧光性可以更好的在显微镜下进行细胞分析。经过四天培养后,细胞在与打印支架的相互作用下不断增殖并黏附和渗透支架,并将颗粒相互连接形成了新的组织形态。 共聚焦显微图展示了流体3D打印具有孔隙的颗粒(红色)作为细胞培养支架。尽管颗粒自组装的这个过程是难以控制的,但是最初迹象还是可见的。有痕迹表明细胞(蓝色)渗入多孔颗粒和肌动蛋白丝(绿色)渗透细胞。图片来自于德国亚琛工业大学项目团队RWTH Aachen University – Department of Process EngineeringDWI - Leibniz Institute for Interactive Materials 原文文献Two-Photon Vertical-Flow Lithography for Microtube Synthesis      https://onlinelibrary.wiley.com/doi/10.1002/smll.201901356Fabrication, Flow Assembly, and Permeation of Microscopic Any-Shape Particles https://onlinelibrary.wiley.com/doi/10.1002/smll.202107508
168人看过
2023-02-01 14:56:12蔡司激光共聚焦显微镜-微纳器件的表征分析
对微纳器件进行表征时,常关注的便是器件的表面形貌和三维尺寸信息,比如粗糙度、深度、体积等,这些都是评价微纳加工工艺的重要指标。然而,在进行表面三维的分析工作中,我们可能常遇到这样的苦恼:  光学明场无法直接定位到亚微米级缺陷结构!  样品结构太复杂,微弱信号无法捕获,难以准确测量尺度信息!  三维接触式测量经常会损伤柔软样品,导致测试结果不准确!  今天,友硕小编将从下面几个角度来看看蔡司激光共聚焦显微镜如何帮助你更好地解决这些问题。  失效分析:多尺度多维度原位分析!  器件表面往往存在一些特殊的结构或缺陷,比如亚微米尺度的划痕,这些特征难以在光学明场下被直接观察到。C-DIC(圆微分干涉)观察模式可以让样品表面亚微米尺度的微小起伏都可以呈现出浮雕效果,帮助我们快速定位并开展下一步的分析工作。  ▲ 不同观察方式下晶圆表面缺陷  在定位到感兴趣区域后,可以直接切换到共聚焦模式,进行表面三维形貌扫描,并进行尺寸测量及分析,无需转移样品即可完成样品多尺度多维度的表征。  ▲共聚焦三维图像及深度测量  对于某些样品,暗场和荧光模式也是一种很好定位方法,表面起伏的结构在暗场下尤其明显,如蓝宝石这类能发荧光的晶圆,利用荧光成像也能帮助我们快速地定位到失效结构。甚至,共聚焦还可以和电镜或者双束电镜(FIB)(点击查看)实现原位关联,在共聚焦显微镜下进行定位后转移样品到电镜下进行更高分辨的表征分析。  深硅刻蚀:结构深,信号弱,蔡司激光共聚焦显微镜有办法!  深硅刻蚀的样品通常为窄而深的沟壑结构。接触式测量(如台阶仪)无法接触到沟壑底部测得信息,而由于结构特殊造成了反射光信号损失,常规白光干涉或者显微明场无法捕获底面的微弱信号。因此,不得不对样品进行裂片分析,这不仅破坏了样品,而且还使分析流程复杂化。  西湖大学张先锋老师用蔡司激光共聚焦显微镜对深163.905 μm,宽3.734μm的刻蚀坑进行成像,高灵敏探测器、大功率激光及Z Brightness Correction技术可以帮助成功检测到底部的微弱信号,完成大深宽比(近50:1)样品的三维形貌表征与测量,轻松实现无损检测分析。
272人看过
2023-06-08 17:52:34邀请函|飞纳电镜邀您参加微纳科技与先进材料创新大会 2023
复纳INVITATION微纳科技与先进材料创新大会(2023)将于 6 月 10 日 - 12 日在重庆举办。本次会议旨在凝聚优势力量、加强纳米科学与微纳制造技术的基础研究与应用研究,促进多学科交叉融合,促进先进材料产业化的发展。时间:2023 年 6 月 10 日 - 12 日地点:重庆两江云顶大酒店复纳科技展位号:7 号新兴的微纳材料在电子、通信和物联网、能源存储、化工和燃料生产、医疗保健、药物输送等领域应用广泛。纳米材料的性质与其组成和表面形貌有很大的关系,复纳科技拥有一系列高精尖的分析检测仪器与先进的解决方案,可以对纳米材料进行分析表征和改性。欢迎各位老师同行莅临【7】号展位,和我们一起探讨交流!庄思濛 复纳科技产品经理报告时间:6月12日 16:05-16:25本次会议中,复纳科技产品经理庄思濛将在“微纳技术在新能源电池领域中的应用技术”分会场带来《电池粉末原子层沉积包覆改性及原位电镜表征方案》的主题报告。1、Phenom-飞纳台式扫描电镜飞纳台式扫描电镜操作简单,效率高,成像质量高,其优异的低真空模式可实现无需喷金直接观察不导电样品。最 新的第二代场发射扫描电镜 Phenom Pharos G2 分辨率优于 1.5nm,是分辨率最 高的台式扫描电镜,是纳米材料表征的强有力工具。Phenom Pharos G2飞纳台式场发射扫描电镜Phenom XL G2飞纳台式扫描电镜大样品室卓 越版Phenom ProX飞纳台式扫描电镜能谱一体机2、Forge Nano-原子层沉积系统ALD 原子层沉积技术已被证明可用于多种组分以及纳米结构的制备,包括单原子 / 团簇催化剂、锂电材料表面包覆等等。Forge Nano 设备基于 ALD 工艺可实现从毫克到千吨级的粉末包覆处理量,能够有效提高电池化学性能与安全性。3、DENSsolutions-TEM 原位实验方案DENS 产品可以为 TEM 样品施加外界刺激,实现在 TEM 中引入气、液、热、电等多种条件,捕捉 TEM 样品在真实环境下的动态现象。目前提供的四种原位实验方案:Wildfire TEM 原位加热方案、Lightning TEM 原位热电方案、Climate TEM 原位气相加热方案和 Stream TEM 原位液相加热 / 加电方案。Wildfire 原位加热样品杆Lightning 原位热电样品杆Lightning 原位热电样品杆Stream 原位液相加热/加电样品杆Climate 原位气相加热样品杆4、VSParticle-全自动纳米研究平台VSParticle 设备采用火花烧蚀制备纳米颗粒的技术,可对产生的颗粒进行粒径的控制,从而获得不同粒径中位值的单分散纳米气溶胶。此外该技术也能用于进行快速打印以及粉末表面的纳米沉积。欢迎各位老师莅临展位与我们探讨交流,我们将随时为您提供专业的解答与支持,现场也有精美小礼品相送噢!
210人看过
多维显示器件
溶胶凝胶制备氮化物陶瓷材料
数码显微镜解决方案
活细胞快速成像及动态观测
细胞分选微流控平台
体外渗透测试(IVPT)
BLADE全新超级微波消解仪
上海应用技术大学
多通道生物检测
独特微纳加工技术
无损检测技术服务
流式分析仪
水质粪大肠菌群的测定多管发酵法
自动化PCR-Free解决方案
编码网络的深度神经网络系统
X射线荧光(EDXRF)光谱仪
粒度检测产品
智能实验室
微波化学技术
无线功能性微型器件
全自动微生物双温培养检测系统
表面活性剂
疲劳耐久性测试
增材制造晶格设计平台
高分辨质谱技术
ABI专用国产PCR管
双视测量系统
ABI7500
压力泵实时检测细胞增殖
三维运动仿生机器人
BePure能力验证计划
LED3000环形灯
TURBISCAN TOWER
微生物快速无菌检查设备
微流控软骨芯片
弹性体3D打印解决方案