水合物沉积物和储层物性分析中的低场核磁共振技术应用
天然气水合物作为一种潜在的能源资源,其在海底沉积物中的广泛分布引起了全-球的关注。然而,水合物的开采和利用面临着许多挑战,尤其是在储层物性分析方面。低场核磁共振技术(LF-NMR)作为一种先进的分析手段,为水合物沉积物和储层物性分析提供了新的视角和方法。
低场核磁共振技术的原理与优势
低场核磁共振技术是一种基于核磁共振原理的分析方法,它通过检测样品中氢原子核的磁共振信号,分析其横向弛豫时间(T2)分布,从而获得储层的孔隙尺寸和流体类型信息。与传统的高场核磁共振技术相比,低场核磁共振技术具有设备成本低、使用门槛相对较低、分析测试快速、精确度高、对样品无损耗、样品制备简单等优点。
低场核磁共振技术在水合物沉积物分析中的应用
在水合物沉积物的分析中,低场核磁共振技术能够实时监测水合物在三轴压缩过程中的孔隙结构变化,提供动态的数据支持。通过分析水分子中氢质子的弛豫时间差异,可以研究材料的物理化学特性,从而揭示水合物的力学行为和破坏机制。此外,低场核磁共振技术还能够监测水合物生成和分解过程中的孔隙结构和渗透率变化,这对于理解水合物在沉积物中的赋存状态和开采过程中的物性变化具有重要意义。
水合物储层物性分析的挑战与解决方案
水合物储层的宏观物性表现是由储层沉积物的微观孔隙特征所控制的。理解沉积物在水合物生成过程中微观孔隙结构特征变化对于其物性特征的预测和分析有重要意义。利用低场核磁共振技术监测不同砂样中水合物的生成过程,可以利用横向弛豫时间(T2)谱对生成过程中的微观孔隙结构及水相渗透率演化规律进行分析。
研究表明,水合物优先生成于沉积物较大孔隙中,在半径较小的孔隙中水合物很难生成;生成前期水合物的生长速率较快,后期逐渐减缓;水合物的生成导致沉积物孔隙尺寸和分布的变化,表现为随着水合物的生成,沉积物水相孔隙空间的最-大孔隙半径和平均孔隙半径逐渐减小,孔隙空间的分形系数逐渐增大;沉积物水相渗透率随水合物生成过程中水合物饱和度的增加,先迅速减小后缓慢减小。
低场核磁共振技术在水合物沉积物和储层物性分析中的应用,为水合物的勘探和开发提供了一种新的技术手段。它不仅能够提供实时的孔隙结构和渗透率变化数据,还能够揭示水合物的力学行为和破坏机制,对于优化水合物的开采策略和提高资源的利用率具有重要的指导意义。
相关产品
全部评论(0条)
推荐阅读
-
- 水合物沉积物和储层物性分析中的低场核磁共振技术应用
- 在水合物沉积物的分析中,低场核磁共振技术能够实时监测水合物在三轴压缩过程中的孔隙结构变化,提供动态的数据支持。通过分析水分子中氢质子的弛豫时间差异,可以研究材料的物理化学特性,从而揭示水合物的力学行为
-
- 低场核磁共振技术:富油煤储层物性分析的关键技术
- 低场核磁共振技术通过测量样品中的氢原子核(通常是水分子中的氢)的弛豫时间,来获取孔隙结构的信息。这项技术的优势在于其无损检测能力,能够快速、准确地分析煤样,而不会破坏样品。此外,低场核磁共振技术的成本
-
- 低场核磁共振技术在染料性能分析中的应用
- 低场核磁共振技术(NMR)为染料性能分析提供了一种有效的工具,特别是在分析染料的颗粒分散性方面。通过这种技术,可以更好地理解和控制颜料的粒径分布,从而提高最-终产品的质量。
-
- 温度压力对水合物开采的影响及低场核磁共振技术的应用
- 低场核磁共振技术通过分析水合物中的氢原子核的信号,可以提供水合物结构的详细信息。这对于理解水合物的形成机制和稳定性至关重要。
-
- 低场核磁共振技术在可燃冰开采中的应用
- 低场核磁共振技术在可燃冰的开采中具有广泛的应用前景。它不仅可以用于监测甲烷水合物的含量和饱和度,还可以实时监测甲烷和水分的生成速率及空间运移,为可燃冰的稳定开采提供重要的数据支持。
-
- 快速无损:低场核磁共振技术助力工程填料物性检测
- 在工程渣土与泥浆回填造地的应用中,低场核磁共振技术同样发挥着重要作用。它可以帮助工程师评估回填材料的均匀性和稳定性,以及其对环境的潜在影响。
-
- 低场核磁共振技术在饲料粗脂肪测定中的应用
- 在饲料工业中,低场核磁共振技术可以用于快速、准确地测定饲料中的水分含量、脂肪含量等关键指标。与传统的化学提取方法相比,低场核磁共振技术不需要使用有害的有机溶剂,也不会对样品造成破坏,因此更加环保和安全
-
- 奶酪中固体脂肪含量测定:低场核磁共振技术的应用
- 在奶酪样品中,固态脂肪和液态脂肪中的氢质子因存在形式不同,在核磁共振自由感应衰减(FID)信号中表现出不同的特性。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论