同步测量PSII活性(叶绿素荧光)和PSI活性(P700)、PC(质体蓝素)、Fd(铁氧还蛋白)的氧化还原变化
相较于经典的双通道叶绿素荧光仪DUAL-PAM-100测量系统,新一代四通道动态LED阵列近红外光谱仪DUAL-KLAS-NIR,在光合作用电子传递链组分质体蓝素(PC)、光系统I反应中心(P700)及铁氧还蛋白(Fd)的氧化还原测量方面实现了重大技术突破。它创新性地采用了四波长对近红外探测技术,成功解决了围绕光系统I供体侧和受体侧电子传递精准解析的难题,为光合作用研究开辟了一条崭新的道路。作为PSI的电子供体和电子受体,PC(质体蓝素)和Fd(铁氧还蛋白)对PSI的氧化还原起着至关重要的调控作用。但一直缺乏科学便捷的手段对其运转状态进行检测。DUAL-KLAS-NIR采用先进的去卷积技术(一种根据来源不同对信号进行分离的技术),能够同时测量4组不同波长对(780-820nm,820-870nm,840-965nm,870-965nm)的信号,实现对P700(PSI反应中心)、PC和Fd的氧化还原状态的同步分析。另外,它还可以测量由540nm和460nm光化光激发的叶绿素荧光。还有, DUAL-KLAS-NIR四通道动态LED阵列近红外光谱仪也可以扩展P515/535模块,测量跨类囊体膜的质子梯度ΔpH和跨膜电位ΔΨ,分析与电子传递耦合的跨类囊体膜质子转移,质子动力势pmf形成。可以扩展NADPH/9-AA模块,测量NADP+的还原程度。最后,DUAL-KLAS-NIR也可以通过联用叶室3010-DUAL与GFS-3000光合仪联用,同步测量光反应电子传递和暗反应CO2同化,系统全面的研究光合作用机理。2016年2月,Photosynthesis
Research发表Schreiber博士团队标题为“Deconvolution of ferredoxin, plastocyanin,
and P700 transmittance changes in intact leaves with a new type of kinetic LED
array spectrophotometer”的研究论文,隆重介绍了新设计的四通道动态LED阵列近红外光谱仪DUAL-KLAS-NIR。时至今日,DUAL-KLAS-NIR已累计发表论文超过80篇。其中不乏Nature Plants,Nature Communications,The Plant Cell,New
Phytologist,Plant Physiology,The Plant Journal等植物学领域的专业高分杂志文章(详见附录)。
※ 可测量活体植物叶片或叶绿体/类囊体/藻类悬浮液,对P700、PC和Fd分别进行连续实时的分析。※ 蓝光460nm和绿光540nm双波长调制叶绿素荧光测量,可分别测量叶片表层和深层细胞的光能转换。※ 通过板载芯片LED技术设计了高度紧凑的固态照明系统,可提供635nm,460nm的光化光和740nm的远红光,以及635nm单周转和多周转饱和闪光。※ 光学部件的几何结构完美兼容3010-DUAL联用叶室,可与GFS-3000光合仪组合,在可控条件(光照,温度,湿度,CO2浓度)下同步测量气体交换相关的CO2同化和电子传递相关的氧化还原。※ 测量光频率范围广(1- 400 kHz),允许连续评估Fo,也可以在高时间分辨率下记录叶绿素荧光快速动态瞬变(如多相荧光上升动力学或脉冲弛豫动力学)。※ 专业数据记录软件,入门特别简单。
※ 测量暗适应样品的PC,P700和Fd最大氧化/还原量,根据光谱特征可计算PC/P700和Fd/P700的比值,评估PSI及其与供体侧和受体侧的氧化还原平衡,用于PSI复合体组装中间体功能的研究。※ 测量并记录光适应条件下光合电子传递过程中质体蓝素(PC)、光系统I反应中心(P700)和铁氧还蛋白(Fd)的氧化还原比例,评估PSI及其与供体侧和受体侧的相互关系和协调性。※ 可以通过蓝色和/或绿色PAM荧光测量叶片表层和深层细胞的光能转换,非常适合与整个叶子的NIR吸收测量进行对比分析。※ 完整的慢速诱导动力学曲线和快速诱导动力学曲线测量功能,慢速诱导动力学可进行饱和脉冲分析、淬灭分析,诱导曲线,光合控制,快速光曲线和暗弛豫曲线测量;快速诱导动力学可进行Qa_Decay,Poly300ms等十几种程序测量。※ 可使用软件的自动测量程序实验,也可以编辑脚本(Script)或者保存手动测量程序(Trigger),轻松执行复杂的测量协议。可自定义测量动作用于特殊诱导过程动力学曲线数据获取和分析,如状态转换和波动光曲线等。※ 扩展P515/535模块,可测量跨类囊体膜的质子梯度ΔpH和跨膜电位ΔΨ,分析与电子传递耦合的跨类囊体膜质子转移,质子动力势pmf形成。※ 扩展NADPH/9-AA模块,可测量NADP+的还原程度。DUAL-KLAS-NIR测量模式选择
DUAL-KLAS-NIR软件近红外测量光设置

同步测量Fluo, P700, PC, Fd慢速诱导动力学曲线同步测量Fluo, P700, PC, Fd光响应曲线同步测量Fluo, P700, PC, Fd诱导曲线+暗弛豫

| 
| 
|
| P515/535 | NADPH/9AA | 3010-DUAL |
※ 扩展P515/535模块,可测量跨类囊体膜的质子梯度ΔpH和跨膜电位ΔΨ,分析与电子传递耦合的跨类囊体膜质子转移,质子动力势pmf形成。※ 扩展NADPH/9-AA模块,可测量NADP+的还原程度。※ 扩展3010-DUAL联用叶室,可与GFS-3000光合仪组合,在可控条件(光照,温度,湿度,CO2浓度)下同步测量气体交换相关的CO2同化和电子传递相关的氧化还原。
※ 光合电子传递链复合体的氧化还原状态深入剖析,类囊体膜蛋白组分功能研究,如光系统I的装。※ 光合合成生物学研究相关的植物学,植物生理学,分子生物学,农学,林学、园艺的领域。※ 人工光合作用和能源相关领域,如生物光伏等。
案例1:借助DUAL-KLAS-NIR定量区分流经PSI的线性和环式电子传递德国Christian-Albrechts大学的科学家Jens Appel使用四通道动态LED阵列近红外光谱仪Dual-KLAS-NIR,测量蓝藻Synechocystis sp.PCC 6803围绕PSI的质体蓝素、P700和FeS簇(包括铁氧还蛋白)的氧化还原状态,首次以绝对值量化了光合生物中通过光系统I的电子流。该研究确定了线性和环式电子传递的比例:环式电子传递占通过PSI的电子流的35%。Marius L. ,et al. 2020, BBA-Bioenergeticshttps://doi.org/10.1016/j.bbabio.2020.148353
案例2:DUAL-KLAS-NIR测量光合控制可作为光合电子传递和卡尔文循环平衡的探针德国WALZ的应用科学家Gert Schansker博士使用四通道动态LED阵列近红外光谱仪DUAL-KLAS-NIR测量33种植物的光曲线,探测和表征光合控制的光强度依赖性。研究发现, PC在光强≤400
μmolm-2s-1时完全氧化(阴生植物的叶片的光照强度低于阳生植物叶片)。qP和还原态P700之间的关系可以用于衡量光合控制的程度。除了测量光曲线,也可以使用单个中等光强度来表征叶片之间的相对状态。进一步的发现,在一些适应阴生环境的叶片中,Fd在高光强度下变得更加氧化表明从PQ库到P700的电子传递无法跟上PS I受体侧的电子流出。与光合控制的诱导相比,NPQ诱导需要较低的光强度(类囊体腔酸化程度低)。测量结果还可以用于比较qP和qL,比较的结果是qP是与光合控制更相关的叶绿素荧光参数。Gert Schansker, 2022, Photosynthesis
Research
https://doi.org/10.1007/s11120-022-00934-7
案例3:植物通过重新调整光合机构来适应光系统I光抑制芬兰图尔库大学的Tapio Lempi?inen等人通过对正常温度下培养的拟南芥设置5种不同的光处理:(1).不处理,(2).60%
PSI光抑制,(3).85% PSI光抑制, (4) .60% PSI光抑制后在生长条件下“恢复”24小时,(5).85%
PSI 光抑制后在生长条件下“恢复”24小时。然后对不同处理样品的主要光合复合物、光合光反应的功能和调节、ATP 合酶和碳同化进行分析。研究功能性PSII和PSI之间的不平衡是否会诱导光合作用适应PSI受限的条件。探索植物短期和长期的驯化机制。研究发现,抑制后直接测量可探测短期适应机制,包括将激发能量重定向到PSI 的类囊体蛋白磷酸化,光合作用反馈调节的变化,比如放松光合作用控制(Photosynthetic Control)和激发能淬灭。处理后恢复24小时测量可以有效探测光合机构的长期适应机制,比如基质氧化还原系统的重建以及ATP合酶和细胞色素b6f丰度的增加。植物在适应了PSI限制条件后无需进行大量PSI修复即可恢复CO2同化能力。对 PSI 抑制的反应表明植物有效地适应了光合机构中发生的变化,这可能是植物适应不利环境条件的关键组成部分。Lempi?inen,
T., et al. 2022.
https://doi.org/10.1111/pce.14400
德国亥姆霍兹环境研究中心Lai Bin团队通过四通道动态LED阵列近红外光谱仪Dual-KLAS-NIR系统地研究了在BPV系统中培养的蓝藻集胞藻的光合电子流,揭示了电子传递链中各组分的氧化还原状态,并描绘了相应的电子流向各种汇。该研究表明,EET与PSI下游的类Mehler反应竞争电子。在高浓度下,亚铁氰化物对电子传递链的影响与微量氰化物相似,突出了精心设计BPV实验的必要性。此外,该团队另外一项研究还通过Dual-KLAS-NIR测量PSI、质体蓝素和铁氧还蛋白的氧化还原变化。阐明了生物光伏蓝藻集胞藻动态切换电子源,并根据生理和环境条件,利用不同的细胞外转移途径将电流输出到外部电子汇的机理。Jianqi Yuan.,et al. 2024, https://doi.org/10.1016/j.ese.2024.100519.
Schneider,
H., et al. 2025,https://doi.org/10.1111/tpj.17225
案例5:FNR与PSI锚定可促进环式电子传递,但会牺牲线性电子传递和CO?同化效率英国谢菲尔德大学Matthew P Johnson课题组利用基于CRISPR/Cas9的基因编辑技术,在莱茵衣藻中构建了通过PSAF将FNR锚定于PSI的嵌合型突变体。使用DUAL-PAM-100双通道叶绿素荧光仪P515/535模块检测电致变色位移(ECS),使用 DUAL-KLAS-NIR四通道动态LED阵列近红外光谱仪以类似方法测量P700氧化。研究发现,相较于野生型,嵌合突变体因NADPH还原速率降低导致光合生长受限、线性电子传递受阻,且PSI受体侧限制增强。但该突变体同时表现出增强的跨膜质子梯度(ΔpH)和非光化学淬灭(NPQ),表明CET活性显著提升。因此,将FNR锚定于PSI并未促进光合线性电子传递,反而通过牺牲线性电子传递与CO?固定效率优先支持环式电子传递。这一发现揭示了FNR定位对光合电子流向分配的关键调控作用。Emrich-Mills, T. Z., et al. 2025.
https://doi.org/10.1093/plcell/koaf042
1、Antal, T. K., et al. (2025).
"Analysis of chlorophyll fluorescence induction curves (OJIP transients)
of phytoplankton under conditions of high photosynthetic activity."Journal of Applied Phycology.2、Emrich-Mills, T. Z., et al.(2025). "Tethering ferredoxin-NADP+ reductase to photosystem I promotes
photosynthetic cyclic electron transfer." The Plant Cell.3、Pshybytko, N. L. (2025).
"Assessment of the Electrochemical Potential of Thylakoid Membranes inHordeum vulgare L. Sprouts of Different Ages Under Heat Stress Using
Differential Absorption Spectroscopy." Journal of Applied Spectroscopy.4、Schneider, H., et al. (2025).
"Understanding the electron pathway fluidity of Synechocystis in
biophotovoltaics." The Plant Journal 121(2): e17225.5、Doello, S., et al. (2024). "Metabolite-level regulation of
enzymatic activity controls awakening of cyanobacteria from metabolic
dormancy." Current Biology.6、Emrich-Mills, T. Z., et al. (2024). "Tethering ferredoxin-NADP+
reductase to photosystem I promotes photosynthetic cyclic electron
transfer." bioRxiv: 2024.2011.2001.621516.7、Jones, L. M. (2024). Stress Response in Populus balsamifera Under
Projected Weather Extremes.[学位论文]8、Nikkanen, L., et al. (2024). "PGR5 is needed for
redox-dependent regulation of ATP synthase both in chloroplasts and in
cyanobacteria." bioRxiv: 2024.2011.2003.621747. 9、Niu, Y. (2024). Probing Dynamic Regulation of Photosynthesis Using
Harmonically Oscillating Light.Volgusheva, A. A., et al. (2024). "Effect
of the insecticide clothianidin on the photosynthetic electron transport chain
in pea." Photochemistry and Photobiology n/a(n/a).[学位论文]10、Hani, U. and A. Krieger-Liszkay (2024). "Manganese deficiency
alters photosynthetic electron transport in Marchantia polymorpha." Plant
Physiology and Biochemistry: 109042.11、Hubá?ek, M., et al. (2024). "Strong heterologous electron sink
outcompetes alternative electron transport pathways in photosynthesis."The Plant Journal n/a(n/a).12、Mattila, H., et al. (2024). "Flavonols do not affect aphid load
in green or senescing birch leaves but coincide with a decrease in Photosystem
II functionality." Biology Open.13、Ortega-Martínez, P., et al. (2024). "Glycogen synthesis
prevents metabolic imbalance and disruption of photosynthetic electron
transport from photosystem II during transition to photomixotrophy in
Synechocystis sp. PCC 6803." New Phytologist n/a(n/a).14、Degen, G. E. and M. P. Johnson (2024). "Photosynthetic control
at the cytochrome b6f complex." The Plant Cell.15、Pshybytko, N. L. (2024). "Redox State of Photosynthetic
Ferredoxin Under Heat and Light Stress." Journal of Applied Spectroscopy.16、Nies, T., et al. (2024). "A mathematical model of
photoinhibition: exploring the impact of quenching processes." in silico
Plants 6(1).17、Maekawa, S., et al. (2024). "Enhanced Reduction of Ferredoxin
in PGR5-deficient mutant of Arabidopsis thaliana Stimulated
Ferredoxin-dependent Cyclic Electron Flow around Photosystem I."
Preprints.18、Niu, Y., et al. (2024). "Dynamics and interplay of
photosynthetic regulatory processes depend on the amplitudes of oscillating
light." Plant, Cell & Environment n/a(n/a).19、Volgusheva, A. A., et al. (2024).
"Effect of the insecticide clothianidin on the photosynthetic electron
transport chain in pea." Photochemistry and Photobiology n/a(n/a).20、Yuan, J., et al. (2024).
"Molecular dynamics of photosynthetic electron flow in a biophotovoltaic
system." Environmental Science and Ecotechnology: 100519.21、Degen, G.
E., et al. (2023). "PGR5 is required to avoid photosynthetic oscillations
during light transitions." Journal of Experimental Botany.22、Ohnishi,
M., et al. (2023). "Evaluating the Oxidation Rate of Reduced Ferredoxin in
Arabidopsis thaliana Independent of Photosynthetic Linear Electron Flow:
Plausible Activity of Ferredoxin-Dependent Cyclic Electron Flow around
Photosystem I." International journal of molecular sciences 24(15): 12145.23、Niu, Y.,et al. (2023). "Plants cope with fluctuating light by frequency-dependent
nonphotochemical quenching and cyclic electron transport." New Phytologistn/a(n/a).24、Flannery, S. E., et al. (2023). "STN7 is not essential for
developmental acclimation of Arabidopsis to light intensity." The Plant
Journal n/a(n/a).25、Gunell, S., et al. (2023). "Enhanced function of
non-photoinhibited photosystem II complexes upon PSII photoinhibition."Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148978.26、Ishii, A., et al. (2023). "The photosystem I supercomplex from
a primordial green alga Ostreococcus tauri harbors three light-harvesting
complex trimers." eLife 12: e84488.27、Molinari, P. E., et al. (2023). "Lighting the light reactions
of photosynthesis by means of redox-responsive genetically encoded biosensors
for photosynthetic intermediates." Photochemical & Photobiological
Sciences.28、Degen, G. E., et al. (2023). "High cyclic electron transfer via
the PGR5 pathway in the absence of photosynthetic control." Plant
Physiology.29、Furutani, R., et al. (2023). "Higher Reduced State of
Fe/S-Signals, with the Suppressed Oxidation of P700, Causes PSI Inactivation in
Arabidopsis thaliana." Antioxidants 12(1): 21.30、Santana-Sánchez, A., et al. (2022). "Flv3A facilitates O2
photoreduction and affects H2 photoproduction independently of Flv1A in
diazotrophic Anabaena filaments." New Phytol n/a(n/a).31、Lazár, D., et al. (2022). "Insights on the regulation of
photosynthesis in pea leaves exposed to oscillating light." Journal of
Experimental Botany 73(18): 6380–6393.32、Lucius, S., et al. (2022). "CP12 fine-tunes the Calvin-Benson
cycle and carbohydrate metabolism in cyanobacteria." Front. Plant Sci. 13:1028794.33、Khruschev, S. S., et al. (2022). "Machine learning methods for
assessing photosynthetic activity: environmental monitoring applications."Biophysical Reviews.34、Penzler, J.-F., et al. (2022). "Commonalities and specialties
in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in
Arabidopsis." Plant Physiology.35、Appel, J., et al. (2022). "Evidence for Electron Transfer from
the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the
Cyanobacterium Synechocystis sp. PCC 6803." Microorganisms 10(8): 1617.36、Lempi?inen, T., et al. (2022). "Plants acclimate to Photosystem
I photoinhibition by readjusting the photosynthetic machinery." Plant Cell
Environ.37、Schansker, G. (2022). "Determining photosynthetic control, a
probe for the balance between electron transport and Calvin–Benson cycle
activity, with the DUAL-KLAS-NIR." Photosynthesis Research.38、Burgstaller, H., et al. (2022). "Synechocystis sp. PCC 6803
Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under
Oxic Conditions." Front Microbiol 13: 896190.39、Rodriguez-Heredia,
M., et al. (2022). "Protection of photosystem I during sudden light stress
depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant
Physiology.40、Wang, Y.,et al. (2022). "Pyruvate:ferredoxin oxidoreductase and low abundant
ferredoxins support aerobic photomixotrophic growth in cyanobacteria."eLife 11.41、Niu, Y., et al. (2022). "A plant’s capacity to cope with fluctuating light depends on
the frequency characteristics of non-photochemical quenching and cyclic
electron transport." bioRxiv: 2022.2002.2009.479783.42、Schmidtpott,
S. M., et al. (2022). "Scrutinizing the Impact of Alternating
Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis
thaliana." International Journal of Environmental Research and Public
Health 19(9): 5144.43、Degen, G. E., et al. (2022). "Supercharged PGR5-dependent
cyclic electron transfer compensates for mis-regulated chloroplast ATP
synthase." bioRxiv: 2022.2009.2025.509416.44、Ishii, A., et al. (2022). "The photosystem I supercomplex from
a primordial green alga Ostreococcus tauri harbors three light-harvesting
complex trimers." 2022.2011.2008.515661.45、Mattila, H., et al. (2022). "Evaluation of visible-light
wavelengths that reduce or oxidize the plastoquinone pool in green algae with
the activated F0 rise method." Photosynthetica.46、Furutani, R., et al. (2021). "The difficulty of estimating the
electron transport rate at photosystem I." Journal of Plant Research.47、Santana-Sánchez, A. (2021). "DYNAMIC REGULATION OF OXYGENIC
PHOTOSYNTHESIS IN CYANOBACTERIA BY FLAVODIIRON PROTEINS."48、Balti, H., et al. (2021). "Differences in Ionic, Enzymatic, and
Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus
Species." Plants 10(7): 1401.49、Castell, C., et al. (2021). "New Insights into the Evolution of
the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red
Branches of Photosynthetic Eukaryotes." Plant and Cell Physiology.50、Hepworth, C., et al. (2021). "Dynamic thylakoid stacking and
state transitions work synergistically to avoid acceptor-side limitation of
photosystem I." Nature Plants.51、Mattila, H., et al. (2021). "Singlet oxygen, flavonols and
photoinhibition in green and senescing silver birch leaves." Trees.52、Miyake, C. (2021). "Photosynthetic Linear Electron Flow Drives
CO2 Assimilation in Maize Leaves." International journal of molecular
sciences 22.53、Ohnishi, M., et al. (2021). "Photosynthetic Parameters Show
Specific Responses to Essential Mineral Deficiencies." Antioxidants 10(7):
996.54、Rühle, T., et al. (2021). "PGRL2 triggers degradation of PGR5
in the absence of PGRL1." Nature communications 12(1): 3941.55、Shimakawa, G., et al. (2020). "Near-infrared in vivo
measurements of photosystem I and its lumenal electron donors with a recently
developed spectrophotometer." Photosynthesis Research 144(1): 63-72.56、Flannery, S. E., et al. (2020). "Developmental acclimation of
the thylakoid proteome to light intensity in Arabidopsis." The Plant
Journal 105(1): 223-244.57、Furutani, R., et al. (2020). "Intrinsic Fluctuations in
Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I."Plants 9(12): 1761.58、Kato, H., et al. (2020). "Characterization of a giant
photosystem I supercomplex in the symbiotic dinoflagellate
Symbiodiniaceae." Plant Physiology: pp.00726.02020.59、Nikkanen, L., et al. (2020). "Functional redundancy between
flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803." The Plant
Journal n/a(n/a).60、Sétif, P., et al. (2020). "Identification of the electron donor
to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo
spectroscopy." Biochimica et Biophysica Acta (BBA) - Bioenergetics1861(10): 148256.61、Theune, M. L., et al. (2020). "In-vivo quantification of
electron flow through photosystem I – cyclic electron transport makes up about
35 % in a cyanobacterium." Biochimica et Biophysica Acta (BBA) -
Bioenergetics: 148353.62、Ifuku, K., et al. (2020). "Editorial: O2 and ROS Metabolisms in
Photosynthetic Organisms." Frontiers in Plant Science 11: 618550.63、Mattila, H. (2020). "On singlet oxygen, photoinhibition,
plastoquinone, and their interconnections." 研究报告.64、Mattila, H., et al. (2020). "Action spectrum of the redox state
of the plastoquinone pool defines its function in plant acclimation." The
Plant Journal 104(4): 1088-1104.65、Kadota K, Furutani R, Makino A, Suzuki Y, Wada S, Miyake C:
Oxidation of P700 induces alternative electron flow in photosystem I in wheat
leaves. Plants 8: 152.66、Sétif P, Boussac A, Krieger-Liszkay A: Near-infrared in vitro
measurements of photosystem I cofactors and electron-transfer partners with a
recently developed spectrophotometer. Photosynthesis Research 142: 307-319.67、Telman W, Liebthal M, Dietz K-J: Redox regulation by peroxiredoxins
is linked to their thioredoxin-dependent oxidase function.Photosynthesis
Research, in press.68、Miyake, C. (2019). "P700 oxidation suppresses the production of
reactive oxygen species (ROS) in photosystem I and induces
ferredoxin-independent cyclic electron flow within PS I." Photosynthesis
Hydrogen Energy Research for Sustainability: 24.69、Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M,
Meyer A, Clemens S, Sharma SS, Dietz K-J: Interference between arsenic-induced
toxicity and hypoxia. Plant Cell and Environment 42: 574-590.70、Nikkanen L, Toivola J, Trotta A, Guinea Diaz M, Tikkanen M, Aro E-M,
Rintam?ki E: Regulation of cyclic electron flow by chloroplast NADPH-dependent
thioredoxin system. Plant Direct 2: e00093.71、Shimakawa G, Miyake C: Changing frequency of fluctuating light
reveals the molecular mechanism for P700 oxidation in plant leaves. Plant
Direct 2: e00073.72、Takagi D, Miyake C: PROTON
GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. Physiologia
Plantarum 164: 337–348.73、Vaseghi M-J, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer
H, Müller SM, Dietz K-J: The chloroplast 2-cysteine peroxiredoxin functions as
thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7:
e38194.74、Lima-Melo, Y., et al. (2018). "Consequences of photosystem I
damage and repair on photosynthesis and carbon utilisation in Arabidopsis
thaliana." The Plant Journal.75、Nikkanen, L. (2018). "Dynamic regulation of photosynthesis by
chloroplast thioredoxin systems." 研究报告.76、Nikkanen, L., et al. (2018). "Multilevel regulation of
non-photochemical quenching and state transitions by chloroplast
NADPH-dependent thioredoxin reductase." Physiologia plantarum 0(ja).77、Schreiber U: Redox changes of ferredoxin, P700, and plastocyanin
measured simultaneously in intact leaves. Photosynthesis Research 134: 343–360.78、Hanke, G. (2017). Preface: ferredoxin. Photosynthesis Research.Photosynthesis Research, Springer.79、WALZ (2017). "Announcing a new generation of deconvoluting PAM
devices: The Dual/KLAS spectrophotometer " WALZ.80、Klughammer C, Schreiber U: Deconvolution of ferredoxin,
plastocyanin, and P700 transmittance changes in intact leaves with a new type
of kinetic LED array spectrophotometer. Photosynthesis Research 128: 195–214.81、Schreiber U, Klughammer C: Analysis of photosystem I donor and
acceptor sides with a new type of online-deconvoluting kinetic LED-array
spectrophotometer. Plant and Cell Physiology 57: 1454–1467如果您DUAL-KLAS-NIR感兴趣,请识别下方二维码填写登记表,我们会为您提供专业的服务,真诚期待与您的合作!
电话:021-32555118
? 蓝藻的“能量缓冲”:糖原合成在光合作用中的关键角色? 光合作用电子传递链响应环境变化的4种短期调控机制? 2024光合作用文献数据库文献更新数量超1110篇春分:草长莺飞二月天,拂堤杨柳醉春烟。
参与评论
登录后参与评论