仪器网(yiqi.com)欢迎您!

| 注册 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

产品中心

当前位置:仪器网>产品中心> 北京北广精仪仪器设备有限公司>击穿试验仪>介电击穿强度测定仪>变压器绝缘纸电气强度试验仪
收藏  

变压器绝缘纸电气强度试验仪

立即扫码咨询

联系方式:400-855-8699转8003

联系我们时请说明在仪器网(www.yiqi.com)上看到的!

扫    码    分   享
为您推荐

产品特点

变压器绝缘纸电气强度试验仪GB1408.1-2016《绝缘材料电气强度试验方法工频下试验第2部分》
GBT13542.1-2009电气绝缘用薄膜GB/T1695-2005《硫化橡胶工频击穿电压强度和耐电压的测定方法》
GB/T3333-1999《电缆纸工频击穿电压试验方法》

详细介绍

变压器绝缘纸电气强度试验仪‌绝缘材料性能评估‌测试固体绝缘材料(塑料、薄膜、陶瓷、树脂等)在工频或直流电压下的击穿强度(kV/mm)及耐压时间,为电力设备、新能源等领域提供关键数据支持。

检测材料微观缺陷(如气泡、裂纹),预防因绝缘失效导致的设备故障。

‌多领域应用‌电力行业:评估高压电缆、变压器绝缘子的耐压性能。新能源:测试电池隔膜、电机绝缘材料的介电特性。科研:研究新型绝缘材料的失效机理及优化工艺。

变压器绝缘纸电气强度试验仪‌电压范围‌输出范围:AC/DC 0-50kV连续可调,BDJC-100KV可100kV。升压速率:100-3000V/s无极调速,满足不同材料的梯度测试需求。

电压测量误差≤2%,配备三级联锁防护(机械/电子/物理隔离)。过流保护、漏电保护及直流试验自动放电功能,确保操作安全。

微信图片_20240308104000.jpg

产品型号:BDJC-10KV、BDJC-50KV、BJC-100KV

产品品牌:北京北广精仪

控制方式:计算机控制

符合标准:GB/T1408、ASTM D149、IEC60243-1等

适用材料:橡胶、塑料、薄膜、陶瓷、玻璃、漆膜、树脂、电线电缆、绝缘油等绝缘材料

测试项目:击穿电压测试、介电强度测试、电气强度测试、耐电压击穿强度测试等

试验电压:10KV、20KV、50KV、100KV、150KV等

电压精度:≤1%

适用材料:绝缘材料

升压速率:10V/S-5KV/S

试验方式:交流/直流、耐压、击穿、梯度升压

控制系统:PLC控制升压

核心部件:采用进口配件

试验介质:绝缘油、空气

显示方式:曲线显示、数据打印

其它特点:无线蓝牙控制

设备组成:主机、计算机、电极

电极规格:25mm、75mm、6mm

电器容量:3KVA、5KVA、10KVA

耐压时间:0-8H

安全保护:九级安全保护

质保日期:三年、终身维护。

培训方式:工程师上门培训安装

出据证书:514所、304所、科学研究院等单位均可

‌智能控制‌动态绘制试验曲线,支持数据自动存储及EXCEL/WORD导出。闭环控制系统实时监测升压曲线,避免阶梯式波动。

标准体系与测试方法

‌中国标准‌

GB/T 1408.1-2006、GB/T 1695-2005等,明确试样预处理、电极规格及油温控制范围(如25±2℃)。

‌国际标准对比‌

ASTM D149与IEC 60243在升压方式、测试次数等存在差异(如ASTM允许步进升压,IEC仅认可连续升压)。

‌测试模式‌

连续升压:直接测量击穿电压临界值。

耐压测试:保持规定电压时长验证材料稳定性

14(1).png

产品安全合规性测试中的击穿电压检测

一、测试标准与规范

‌国际标准‌

‌IEC 60243-1‌:定义高压试验的基本术语、试验条件及程序,适用于电气设备和材料的击穿电压测试‌。

‌ASTM D149‌:针对固体绝缘材料的电气强度测试,包括击穿电压测定‌。

‌国内标准‌

‌GB/T 1408.1-2006‌:规定绝缘材料电气强度试验方法,明确工频/直流击穿测试流程‌。

‌GB/T 4074.5‌:漆包线击穿电压测试的专项标准,要求验证绝缘层极限耐压性能‌。

 二、测试流程与操作

‌样品准备‌

清洁并干燥样品表面,避免污染物或潮湿影响测试结果‌。

根据材料类型(如漆包线、云母片、碳化硅)选择电极夹具‌。

‌设备配置‌

使用电压击穿试验仪(如BDJC-50KV型号),支持交流/直流0-150kV测试范围‌。

串联电压/电流表监测实时数据,配置过流保护及门联锁装置保障安全‌。

‌参数设置与执行‌

按标准设置升压速率(如100-500V/s)、电压类型(工频/直流)及环境温湿度‌。

逐步升压至击穿,记录临界电压值并重复测试取平均值‌。

三、合规性验证目标

‌安全性能验证‌

确定绝缘材料的击穿场强(单位厚度耐压能力),防止设备因绝缘失效引发火灾或短路‌。

检测潜在缺陷(如漆膜针孔、杂质),确保产品无局部绝缘薄弱点‌。

‌标准符合性‌

验证是否符合IEC 60851-5(漆包线)、UL 1449(电气设备)等行业准入要求‌。

通过加速老化测试(高温/高湿)模拟长期使用场景,评估材料耐久性‌。

四、典型应用场景

‌漆包线‌:测试绝缘层极限电压(如10kV以上),优化涂漆工艺并筛选合格产品‌。

‌云母片‌:通过工频击穿试验(200kV)验证高温环境下的绝缘可靠性。

‌碳化硅(SiC)‌:评估其在高压电力电子设备中的击穿电压稳定性‌。

五、安全防护措施

‌操作规范‌:穿戴绝缘手套、护目镜,保持安全距离防止电弧伤害‌。

‌设备维护‌:定期校准仪器,测试后手动放电避免残余电压风险‌。

‌应急处理‌:配置紧急停机按钮及急救设备,确保突发状况可快速响应‌。

六、测试报告与改进

记录击穿电压、击穿位置及环境参数,分析数据是否符合设计预期‌。

通过对比不同工艺或材料的测试结果,优化生产流程并推动技术创新‌。

通过上述流程,击穿电压测试可有效保障产品安全合规性,同时为电气设备长期稳定运行提供科学依据‌

 

 

电压击穿试验仪、介电强度试验仪(耐压测试仪)在使用过程中的注意事项:

 

在使用电压击穿试验仪/介电强度试验仪(耐压测试仪)进行硫化橡胶或其他绝缘材料的击穿强度测试时,需严格遵守安全规范并确保测试结果的准确性。以下是关键注意事项的详细说明:

 

 

一、安全防护措施

1. 高压危险防护

   操作人员必须接受高压设备安全培训,熟悉设备紧急停机按钮和断电流程。  

   测试区域设置警示标识(如“高压危险”),禁止无关人员靠近。  

   设备必须可靠接地(接地电阻≤4Ω),避免漏电或静电积累。  

 

2. 防护装置

  确保试验仪配备安全联锁装置(如防护罩未闭合时自动断电)。  

  使用绝缘操作工具(如高压绝缘手套、绝缘垫)辅助操作。  

 

3. 个人防护装备(PPE)  

   穿戴绝缘手套、护目镜及防护服,避免电弧或击穿飞溅物伤害。  

 

 

二、设备设置与校准

1. 电压参数设置  

   升压速率:根据标准(如ASTM D149)选择合适速率(通常为500 V/s或100 V/s)。  

   初始电压:从0开始逐步升压,避免瞬间高压冲击样品。  

 

2. 电极选择与安装  

   使用标准电极(如球形电极或圆柱形电极,符合IEC 60243要求)。  

   确保电极表面平整、清洁,无氧化或污渍(可用酒精擦拭)。  

 

3. 校准与验证

   定期校准设备(电压表、电流表精度需符合标准要求)。  

   使用已知击穿电压的标准样品验证设备准确性。  

 

三、样品处理与测试条件

1. 样品制备

   样品厚度均匀(通常1-3 mm),无气泡、杂质或机械损伤。  

   表面清洁干燥(避免手汗、灰尘或油脂污染)。  

 

2. 环境控制  

   温度:23±2℃,湿度:50±5% RH(参考标准要求)。  

   避免电磁干扰(远离大功率设备或高频信号源)。  

 

3. 样品固定与接触  

   确保样品与电极紧密接触,避免空气间隙导致局部放电。  

   对软质橡胶样品可施加轻微压力(如1 N)保证贴合。  

 

 

四、测试过程操作规范

1. 逐步升压

   缓慢升高电压,避免电压突变导致误判击穿点。  

   实时监测电流(击穿瞬间电流骤升)。  

 

2. 击穿判定

   击穿标准:电流超过设定阈值(如5 mA)或样品发生碳化、穿孔。  

   同一样品不同位置至少测试3次,取平均值(剔除异常值)。  

 

3. 数据记录  

   记录击穿电压、样品厚度、环境条件及击穿形态(如沿面放电或贯穿击穿)。  

 

五、测试后处理与维护

1. 残余电荷释放  

嗯,用户问的是电压击穿试验仪如何选型。首先,我需要理解用户的需求是什么。可能他们是电气工程师、质量检测人员或者是学生做研究?不管怎样,选型这种设备需要考虑多个因素。

首先,电压击穿试验仪主要用于测试绝缘材料的耐压性能,确定其击穿电压和介电强度。不同的应用场景可能需要不同的参数,比如测试电压范围、样品类型、测试标准等等。用户可能想知道具体的选型步骤或者关键参数。

接下来,我要回忆一下电压击穿试验仪的基本构成和常见参数。通常这类仪器分为交流、直流和冲击高压三种类型。不同类型的试验适用于不同的材料和标准。比如,交流试验常用于电缆绝缘,而直流可能用于电机绕组。用户可能需要根据他们的测试对象来选择类型。

然后,测试电压范围是关键参数之一。不同的材料有不同的耐压要求,比如橡胶、塑料、陶瓷等。用户需要确定他们的样品可能承受的电压,从而选择合适量程的设备。如果电压范围不够,可能无法准确测试高耐压材料,反之则会浪费资源。

接下来要考虑样品尺寸和形状。不同的样品可能需要不同的电极配置,比如平板电极、球形电极或者圆柱形电极。设备的电极设计是否可更换或可调,这也是一个重要的点。如果用户经常测试不同形状的样品,设备的灵活性就很重要。

测试标准也是一个不可忽视的因素。不同的行业可能有不同的测试标准,比如IEC、ASTM、GB等。用户需要确保所选的仪器符合他们所在行业或实验室的标准要求,否则测试结果可能不被认可。

输出功率和升压速度也是需要考虑的。足够的功率才能保证在规定时间内达到设定电压,而升压速度则影响测试结果的准确性。特别是对于某些材料,快速升压可能导致击穿发生在非稳态条件下,影响结果的可比性。

安全防护措施也很重要。高压设备存在安全隐患,必须有良好的接地、过流保护、紧急停止按钮等功能。用户可能关心操作的安全性,尤其是如果实验室有非专业人员使用的话。

数据记录和分析功能现在越来越受重视。很多现代仪器具备自动记录、数据导出、曲线显示等功能,方便后续分析和报告生成。用户如果需要大量的测试数据管理,这些功能会很有帮助。

预算当然也是一个因素。不同品牌和型号的设备价格差异较大,用户需要在性能和预算之间找到平衡。可能还需要考虑售后服务、维护成本和配件供应情况。

品牌和售后服务方面,通常质量更可靠,技术支持更好。用户可能倾向于选择有良好口碑和售后服务的厂商,尤其是对于长期使用的实验室来说。

后,可能需要考虑未来的扩展需求。比如,如果用户未来可能会测试更多类型的材料或更高的电压,设备的可升级性和扩展性就很重要。模块化设计或兼容不同附件的能力可以延长设备的使用寿命。

总结一下,我需要把这些因素分门别类,用简洁明了的语言呈现给用户,帮助他们一步步分析自己的需求,并做出合适的选择。同时要提醒用户如果有具体的应用场景或标准,可以进一步提供信息以获得更精确的建议。

选择电压击穿试验仪时需综合考虑样品特性、测试标准、设备性能和安全要求等因素。以下是关键选型步骤和要点:

 1. 明确测试目的与标准

应用场景:确定测试材料类型(如绝缘子、电缆、塑料、橡胶、薄膜等)及其使用环境(高压电器、电子元件等)。

测试标准:根据行业标准选择试验类型(如AC/DC/冲击电压),常见标准:

 IEC 60243(国际电工委员会)

 ASTM D149(美国材料与试验协会)

 GB/T 16927(中国国家标准)

 2. 确定电压类型

交流(AC)试验:适用于电容性绝缘材料(如电缆、电机绕组),模拟工频电压下的击穿行为。

直流(DC)试验:用于电阻性绝缘材料(如陶瓷、云母),测量静态击穿电压。

冲击(雷电)试验:评估材料抗瞬态过电压能力(如避雷器、高压开关)。

 3. 核心参数选择

 (1) 测试电压范围

根据样品耐压等级选择量程(例如:

  低压材料:0–50 kV

  高压绝缘子:100–500 kV

  超高压设备:1–10 MV)

 (2) 电极配置

样品尺寸与形状决定电极类型:

平板电极:适用于大面积样品(如薄膜、板材)。

球-平板电极:用于小体积样品(如橡胶、液体)。

圆柱电极:多用于电线绝缘测试。

 电极间隙可调(常见范围:0.1–50 mm)。

 (3) 输出功率

功率需满足升压速度要求(通常为1–1000 V/s),避免因功率不足导致升压失败。

 (4) 升压速度

按标准规定选择(如IEC 60243-1要求10%额定电压/秒)

 4. 设备功能需求

自动控制:支持预设电压、自动升压/降压、击穿自动停机。

数据记录:实时记录击穿电压、时间、电流曲线(需配备存储卡或USB接口)。

安全保护:

过流保护、过压保护、放电电阻。

紧急停止按钮和机械联锁装置。

环境适应性:温湿度控制(高湿度样品需防潮设计)。

 5. 实验室条件

安装空间:设备尺寸及散热要求(高压设备需预留足够安全距离)。

供电要求:三相电源稳定性(尤其高压试验需稳压电源)。

 6. 预算与品牌选择

入门级:国产设备(如上海华谊、常州朗普)适合常规测试(价格:10万–50万元)。

中:进口品牌(如Hipotronics、WEKA)精度高、功能全(价格:50万–200万元以上)。

特殊需求:定制化设备(如超高压试验台可达数百万伏)。

 7. 验证与校准

选择具备CNAS或CMA认证的实验室进行设备校准。

定期维护(如更换电容、检查绝缘性能)以确保精度。

 示例选型流程

1. 样品类型:测试10 kV电缆绝缘层(AC耐压试验)。

2. 标准依据:GB/T 12706.1-2020。

3. 参数选择:

 电压范围:0–50 kV AC。

 电极:球-平板(直径25 mm/50 mm)。

 升压速度:2 kV/s。

4. 功能需求:自动记录击穿数据、安全联锁。

5. 预算:约30–80万元(国产中端设备)。

提示:若需具体型号推荐,可提供更多细节(如样品尺寸、测试标准、预算范围)。

电压击穿试验仪主要应用在以下行业:

电力行业

变压器:测试变压器的绝缘油、绝缘纸、绕组绝缘等的击穿电压和绝缘强度,确保变压器在高电压环境下稳定运行。

电缆:对电缆的绝缘层进行测试,评估其在不同电压下的绝缘性能,保证电缆传输电力的安全性和可靠性。

绝缘子:检测绝缘子的耐电压性能,判断其能否在高压线路中有效绝缘,防止漏电和闪络现象发生。

电子行业

电子元器件:如电容器、电阻器、电感器等,通过测试绝缘性能,筛选出合格的元器件,提高电子产品的稳定性和使用寿命。

电路板:对电路板的绝缘基材和绝缘涂层进行电压击穿试验,确保电路板在工作时不会发生短路等故障,保障电子产品的性能。通信行业

通信线缆:测试通信线缆的绝缘性能,保证信号在传输过程中不受干扰,防止因绝缘问题导致的信号衰减或中断。

光纤:评估光纤的绝缘护套和涂覆层的耐电压性能,确保光纤通信系统的安全稳定运行。

汽车行业

汽车电气系统:对汽车的电线束、绝缘插头、车载电池的绝缘部件等进行测试,保障汽车电气系统在各种工况下的安全性,防止电气故障引发的安全事故。

新能源汽车:针对新能源汽车的电池包、充电桩、高压线束等高压部件,进行绝缘性能测试,确保新能源汽车的高压系统安全可靠。

航空航天行业

航空航天器的电气系统:对航空航天器上的电线电缆、绝缘材料、电子设备的绝缘部件等进行严格的电压击穿试验,确保在高空中的极端环境下电气系统的安全性和可靠性,保障飞行安全。

航空航天复合材料:测于制造航空航天结构件的复合材料的绝缘性能,为材料的选择和应用提供依据。

材料科学研究领域

绝缘材料研发:研究新型绝缘材料的电气性能,通过电压击穿试验获取材料的击穿电压、击穿强度等数据,为材料的改进和优化提供参考。

功能材料研究:对磁性材料、光电材料、超导材料等功能材料进行电气绝缘强度测试,了解材料的电气性能边界。高压验仪采用计算机控制,通过人机对话方式,完成对绝缘介质材料的工频电压击穿,工频耐压试验。适   用于对固体绝缘材料(如:绝缘漆、树脂和胶、浸渍纤维制品、层压制品、云母及其制品、塑料、薄膜复合制品、陶瓷和玻璃等)在工频电压下击穿电压,击穿强度和耐电压的测试。绝缘材料耐电压击穿测试仪**北广精仪击穿电压测试仪的特色介绍

北广精仪作为国内领先的精密仪器制造商,其击穿电压测试仪凭借的性能和创新的设计,在电力、电子、材料科学等领域广受好评。以下是该产品的几大特色:

1. 高精度测量

北广精仪的击穿电压测试仪采用先进的数字信号处理技术,确保测量精度达到国际领先水平。无论是低电压还是高电压测试,仪器都能提供稳定、可靠的数据,满足各类材料的精确测试需求。

 2. 宽范围测试

该仪器支持广泛的电压测试范围,从几伏到数十千伏,适用于不同材料的击穿电压测试。无论是绝缘材料、塑料、橡胶,还是半导体、陶瓷等,都能轻松应对。

3. 智能化操作

仪器配备了智能化操作系统,用户可通过触摸屏或计算机软件进行参数设置和数据分析。自动化的测试流程减少了人为误差,提升了测试效率。同时,仪器支持数据存储和导出功能,便于后续分析和报告生成。

4.多重安全保护

北广精仪击穿电压测试仪在设计上充分考虑了安全性,配备了过压保护、过流保护、短路保护等多重安全机制,确保测试过程中设备和操作人员的安全。

5. 模块化设计

仪器采用模块化设计,用户可根据需求灵活配置不同的测试模块,扩展仪器的功能和应用范围。这种设计不仅提高了仪器的适应性,还降低了维护和升级的成本。

 6. 环境适应性

北广精仪的击穿电压测试仪具有良好的环境适应性,能够在高温、高湿等恶劣环境下稳定工作。其坚固的外壳和防尘防水设计,确保了仪器在复杂环境中的长期可靠性。

7. 高效节能

仪器采用了先进的节能技术,在保证高性能的同时,降低了能耗,符合现代工业对环保和节能的要求。

8. 完善的售后服务

北广精仪提供全面的售后服务,包括技术支持、设备维护和操作培训,确保用户能够充分利用仪器的各项功能,解决测试中的各种问题。

总结

北广精仪的击穿电压测试仪凭借其高精度、智能化、安全性和环境适应性,成为材料电性能测试领域的理想选择。无论是科研机构还是生产企业,都能通过这款仪器获得准确、可靠的测试数据,提升产品质量和研发效率。

试验软件:

1、独立的控制系统,模块式结构方便于售后维护,外观美观大气,整个实验过程中无噪音,电级自动对中定位,操作方便,安全系数大,精度高。

2、由设备本身触摸屏及控制面板进行操作控制,如不需要进行曲线分析,可不配备计算机。

3、如需进行曲线分析,配备计算机,只进行数据及曲线记录功能,不进行设备控制,避免了试验人员在计算机和设备间交替操作,更人性化。

4、设备具有试验参数,相同试验条件不需要每次试验都进行设置,且断电仍会记忆醉后一次试验设置参数。

5、试验界面简单明了,且配有示意曲线说明,参数不同,曲线走势不同,方便理解。

6、控制面板简洁,功能标注明确,操作简单。

7、可记录并同时显示10次试验记录,方便试验数据的对比分析。且可以随时舍弃不理想的任意一组数据。

8、增加了U盘下载功能,可以将设备中的试验记录直接下载到U盘中。

9、如配备计算机,可生成详细的试验报告单,包括每一组具体信息,多组综合信息,及曲线。

10、设备试验界面采用仪表盘及数字同时且实时显示的方式,更方便试验过程的观看。

11、设备具有安全警告提示,在未关闭试验箱门时试验无法开始,且会弹出警告,在满度(即:高压变压器无输出)时会弹出警告,且试验过程中如果开门,试验会自动结束。

12、采用蓝牙数据传输,解决由于有隔离墙阻挡穿墙过线的麻烦和远距离操作安全可靠;

13、设备配有三色报灯,绿灯亮时表示箱门关闭良好可以开始试验,黄灯亮时表示试验箱门打开,此时可进行试样更换。红灯亮时表示高压大于0.5KV,此时不要开箱门。直流试验结束放电过程警报灯会闪烁且报警。(总结:绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压)

仪器组成:

1、升压部件:由调压器和升压变压器组成升压部分;

2、驱动部件:控制器和电机进电机均匀调节升压变压器;

3、检测部件:集成电路组成的测量电路;

4、计算机测控系统;

5、箱体控制系统

仪器优势:

1、自动放电;

2、交流电压、直流电压测试误差1%;

3、电极支架采用Y质环氧板;

4、软件可连续做10组试验对比;

5、试验曲线不同颜色,可叠加对比;

6、软件可设置电流保护功能;

7、带有主机控制区域,不通过电脑可单独控制主机;

8、主机带有电压、电流显示功能;

9、内置排风装置;

10、内置照明功能;

11、放电报警装置;

12、蓝牙远程控制;

13、三色灯报警装置(绿灯箱门关闭良好,黄灯开门小心操作,红灯有高压);

14、可实现触摸屏或电脑双重操作;

15、可实现组合编程,梯度升压的升压和耐压时间可分别单独设置;

16、U盘下载功能,可以将设备中的试验记录直接下载到U盘中。

漆膜工频电压击穿试验仪两种试验方式介绍:

试验方式的选择在系统设置中进行。需要注意的是交流试验时,需要插入硅堆短路杆。直流试验时需要将硅堆短路杆拔出,以免影响实验系数,并且直流试验结束必须进行放电操作,以免残留余电对实验人员造成危险,放电过程如放电棒来回摆动,放电过程中警报灯闪烁,蜂鸣器报警,需等待蜂鸣器停止报警,警报灯不再闪烁,方可打开试验箱门。

三种试验方法介绍:

连续升压:连续升压又分为快速升压和慢速升压两种,其中快速升压为试样电压从零开始以选择的升压速率匀速升压,直到试样击穿为止,击穿电压为击穿瞬间的电压值。慢速升压为试样电压从零升压到达初始电压,到达初始电压后以选定的升压速率升压直到试样击穿,击穿电压为击穿瞬间的电压值。

逐级升压:试样电压从零快速升压到达初始电压,到达初始电压后以梯度保持时间为时间长度,稳定电压,梯度时间结束后继续以选定的升压速率升压,达到下一个梯度电压值再稳定电压,如此过程直到试样击穿。对于击穿电压的确定分为两种情况,可在试样设置中选择采样方式。

微信图片_20231007131802.png

瞬时升压:试样电压直接到达初始电压,保持该电压设定时间直到试样击穿,击穿电压为击穿瞬间的电压值。

等直径电极如果使用一电极架便上下电极准确对中放置,误差在1. 0 mm内,则下电极直径可减小到(25士 。 mm,两电极直径差不大于0. 2 mm. 其所测结果与5. 1. 1. 1不等直径电极测得的结果不一定相同。厚样品的试验当有规定时,厚度超过 3mm 的板材和片材应单面机加工至(3. 0 士 0. 2) mm. 然后,试验时将高压电极置于未加工的面上。注:为了避兔网络或因受现有设备限制,必要时可以根据需要,通过机加工把试样制备成更小的厚度。带、薄膜和窄条两个电极为两根金属棒,其直径为(6. 0±0. 1) mm. 垂直安装在电极架内,使一个电极在另一个电 撞上面,试样夹在棒的两个端面之间。上下电极要同心轴,误差在0.1 mm内。 两电极端面应与其轴向相垂直,端面的边缘倒成半径为(1. 0土0.2) mm的圆弧。 上电极压力为(50±2) g且应能在电极架内的沿垂直方向自由移动。出了一种合适的装置。 如果需要使试样在拉伸状态下进行试验,则应将试样夹在架子中,使试样披在如图2所示的规定的位置上。 为达到所需的拉伸,方便的办法是将试样的一端缠在可旋转的圆捧上。为了防止窄条边缘发生闪络,可用薄膜或其他薄的绝缘材料条搭盖在窄条边缘并夹住试样。 此外, 电极周围可以采用防弧密封固,此时电植和密封圈之间留有(1~2) mm的环状间隙。 下电极与试样之间的间隙(在上电极与试样接触之前>应小于0.1 mm。注:对薄膜的试验,见IEC60674-2,1998软管和软套管按GB/T7113. 2-2005进行试验。硬管内径100mm及以下的外电极是(25士1) mm宽的金属箱带,内电极是与内壁紧配合的导体,例如圆棒、管、金属箔或充填直径(0. 75~2. 0) mm的金属球,便与管材的内表面良好接触, 不管怎样,内电极的每端应至少伸出 外电极25 mm。注:当没有有害影响时,可用硅油、硅脂或凡士林将箔贴到试样的内外表面。 硬管(内径大于100 mm)外电极是(75土1)mm宽的金属锚带,内电极是直在(25±1)mm的圆形金属箔,金属箔应相当柔软以适应圆筒的曲率。浇注及模塑材料浇注材料按IEC 60455-2: 1998制样和试验。模塑材料应用一对球电极,每个球的直径为(20.0士0.1) mm,在排列电极时,使它们共有的轴线与试样平面垂直。热固性材料应用(1. 0土0.1) mm厚的试样,这些试样可以按ISO 295: 1991压塑成型或按ISO 10724: 1994注塑成型,其表面尺寸应足以防止闪络。注:如果不能应用(1. 0土0. 1) mm厚的试样,则可用(2. 0土O. 2) mm厚的试样。热塑性材料应用按ISO 294-1: 1996和ISO294-3: 1996中同型注塑成型试样,尺寸为60 mm×60 mm×1 mm. 如果该尺寸不足以防止闪络(见5. 3. 2)或按相关材科标准规定要求用压塑成型试样,此时用按 ISO 293: 1986压塑成型的平板试样,其直径至少为100 mm,厚(1.0±0.1) mm。注塑或压塑的条件见相关材料标准。如果没有可适用的材料标准,则这些条件必须经供需双方协商。硬质成型件对不能将其置于平面电极间的成型绝缘件,应采用对置的等直径球电极。通常用作这类试验的电极直径为12. 5 mm或20 mm。清漆按GB/T 1981. 2-2003进行试验充填胶电极是两个金属球,每个球的直径为(12. 5 ~ 13)mm. 水平同轴放置,除另有规定外,彼此相隔(1. 0土0.1) mm,并都嵌入充填胶内 。 应注意避免出现空隙,特别避免两电极间的空隙。 由于用不同的 电极距离得到的结果不能直接相比,因此必须在材科规范的试验报告中注明间隙距离.平待于非叠层材料表面和平行于叠层材料层向的试验如果不必区分由试样击穿引起的破坏和贯穿表面引起的破坏,则可使用5. 2.1或5. 2. 2 的电极,但 5. 2. 1的电极应被优先采用。当要求防止表面破坏时.应采用5. 2. 3的电般 。平行饭电极 板材和片材试验板材和片材时,试样厚度为被试材料厚度,试样表面为长方形,长(100士2) mm,宽(25. 0士 。.2) mm,试样两侧面应切成垂直于材料表面的两个平行平面。 试样夹在金属平行板之间,两金属板相距25mm,厚度不小于10 mm,电压施加在金属板上。对于薄材料可以用2个或3个试样恰当地放置 <即:使它们的表面形成合适的角度>以支撑上电极。电极应有足够大的尺寸,以覆盖试样边缘至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好的接触。电极的边缘应适当倒圆(半径为(3-5)mm),以避免电极的边与边之间的闪络(见图6)注,如果现有设备不能使试样击穿,则可以将试样宽度减少至05. 0±0. 2) mm或 (10.0土O. 2) mm. 试样宽度的这种减少,必须在报告中予以特别说明。这种电极仅适用于厚度至少为1. 5 mm的硬质材料的试验。硬管试验硬管时,试样是一个完整的环或圆弧长度为100 mm的一段环,其轴向长度为(25士0. 2) mm。试样两端应加工成垂直于管铀向的两个平行的平面。将试样放在两平行板电极之间按5. 2. 1. I所述的板材和片材的试验方法进行试验,必要时可用(2~3)个试样来支撑上电极。电极应有足够大的尺寸以使电极覆盖试样并至少超过试样各边15 mm,要注意保证试样上下两面的整个面积均与电极良好接触。锥销电极在试样上垂直试样表面钻两个相互平行的孔,两孔中心距离为(25土1) mm. 两孔的直径这样来确定:用锥度约2%的钱刀扩孔后每个孔的较大的一端的直径不小于4.5 mm且不大5. 5 mm.。钻好的两孔完全贯穿试样,但如果试样是大管子,则孔仅贯穿一个管壁,并在孔的整个长度上用铰刀扩孔。在钻孔和扩孔时,孔周围的材料不应有任何形式的损坏,如劈裂、破碎或碳化。用作电极的锥形销的锥度为(2.0土0. 2)%,并将锥形销压人<但不要锤人>两孔,以使它们能与试样紧密配合,并突出试样每一面至少2 mm(见图7a)和7b))这类电极仅适用于试验厚度至少为1. 5 mm的硬质材料。 平行圆柱形电极对厚度大于15mm的具有高电气强度的试样进行试验时,将试样切成100mm×50 mm,并如图8 所示钻两个孔,每个孔的直径比圆柱形电极的直径大,但差值不大于0.I mm.圆柱形电极直径为(6.0士0.1)mm,并有半球形端部,每个孔的底部是半球形以便与电极端配合,使得电极端部和孔的底部之间间隙在任何点都不超过0.05 mm。如果在材料规范中没有另外规定,则两孔沿其长度的侧面相距应是(10士1)mm,每孔应延伸到离相对的表面(2.25±0. 25) mm以内。两种任选形式的通风电极如回8所示.当使用带小槽的电极时,这些小槽位置应与电极间的间距正好相反。试样除了上述各条中己组述过的有关试样的情况外,通常还要注意下面儿点。制各固体材料试样时,应注意与电极接触的试样两表面要平行,而且应尽可能平整光滑。对于垂直于材料表面的试验,要求试样有足够大的面权以防止试验过程中发生闪络。对于垂直于材料表面的试验,不同厚度的试样其结果不能直接相比(见第4章)。 两电极间距离用来计算电气强度的两电植间距离值应为下列之一(按被试材料的规定)a) 标称厚度或两电极间距离(除非另有规定,一般均采用此值);b) 对于平行于表面的试验,两电极间的距离;c) 在每个试样上击穿点附近直接测悍的厚度或两电极间的距离。试验前的条件处理绝缘材料的电气强度随温度和水份含量而变化, 若被试材料已有规定,则应遵循此规定。 否则,除非另有商定条件,试样应在温度为(23土2)℃,相对湿度为(50士5)%条件下扯理不少于24 h。周围媒质材料应在为防止闪络而选取的周围媒质中试验。在大多数情况下,符合IEC 60296: 2003的变压器油是适用的媒质。对在矿物油中会引起膨胀的材料,此时其他的流体(例如硅油),可能是更合适的。对击穿电压值相对较低的试样,可在空气中试验,此时若要在高温下进行试验时,应注意即使在中等的试验电压下,在电极边缘的放电也会对测试值造成很大影响。如果试图在另一种媒质中时某种材料的性能进行试验评定,则可以应用这种媒质。所选取的媒质应对被试材料的危害影响是小的。周围媒质对试验结果可能有很大影响,特别是对易暖收的材料,如纸租纸板,因此必须在试样制备程序中确定全部的必要步骤(例如干燥和浸渍),以及试验过程中周围媒质的状态。必须有足够的时间让试样和电极达到所要求的温度,但有些材料会因长期处于高温而受到影响。在高温空气中的试验在高温空气中做试验,可在任何设计合理的烘箱中进行,烘箱要有足够大的体棋来容纳试样和电极,使官们在试验时不发生闪络。烘箱应装有空气循环装置使试样周围的温度在规定温度的土2℃内且应大体上保持均匀,把温度计、热电偶或其他测量温度的装置尽可能放在实验点附近测量温度在班体申的试验当试验要在绝缘液体中进行时,除非其他液体更合适外,一般应使用符合IEC 60296: 2003的变庄器油。 必须保证穰体有足够的电气强度以避免网络- 在具有比变压器油更高的的相对电容率的液体中 试验的试样,会出现比在变压器袖中试验时更高的电气强度。 降低变压器油或其他掖体电气强度的杂 质,也可能会增加试样上测得的电气强度。高温下的试验可以在烘箱内的盛液容器中进行<见7. 1),也可在绝缘油作为竟也传递介质的恒温控制的油播中进行。在这种情况下,应采用合适的液体循环措施,以便试样周围的温度大致均匀,并保持在规定温度的±2℃内。电气设备电源用一个可变低压正弦电源供给一个升压变压器来获得试验电压。 变压器及其电源和它的调节装置应具有如下特性。 在回路中有试样的情况下,对等于和小于试样击穿电压的所有电压,试验电压的峰值与有效值(r, m. s)之比为根号2(1土5%)即(1. 34~1. 48)。电源的容量应足够大,使之在发生击穿之前均能符合8. 1. 1 要求,对于大多数材料,在使用推荐的电极的情况下,通常40 mA的输出电流容量巳足够。对于大多数试验来说,电源容量范围为;对于10kV及以下的小电容试样的试验,其容量为0.5kVA;对于试验电压为100 kV以下者则为5 kVA。可变低压电源调节装置应能使试验电压平滑、均匀地变化,无过冲现象。当用一个自耦调压器按第10章施加电压时,所产生的递增的增量不应超过预期击穿电压的2%。对短时试验或快速升压试验,zui好使用马达驱动调节装置。为了保护电源不致损坏,应装有一个装置使在试样击穿的几个周期内切断电源。这个装置可以由一个接在高压回路中的电流敏感元件组成。为了限制在击穿时由电流或电压冲击引起电极的损伤,要求将一个具有合适值的电阻器与电极串联。电阻值的大小应取决于电极所允许的损伤程度。注:应用阻值很高的电阻器可能会导致测得的击穿电压比应用阻值低的电阻器测得的击穿电压值高。电压测量 按等效有效值记录电压值。 较好的方法是用一块峰值电压表并将其读数除以根号2。 电压测量回路的总误差应不超过测得值的5%,该误差包括了由于电压表的响应时间所引起的误差。 在所用的任何升压速率下,该响应时间引起的误差应不大于击穿电压的1%。果用符合8. 2.1要求的电压表来测量施加到电极上的电压。好将它直接接到电极上,也可通过分压器或电压互感器接到电极上。 如果使用升压变压器的测量线圈来测量电压,则施加到电极上的 电压的指示正确度应不受升压变压器负载和串联电阻器的影响。希望在击穿后能在电压表上保留大试验电庄的读数值,从而正确地读出并记录击穿电压,但指示嚣应对在击穿时发生的瞬变现象不敏感。

20s逐组升压试验 将40%的预计短时击穿电压施加于试拌上。 假如不知道短时击穿电压预计值,则应按10. 1 的方法来得到。 假如试样耐受这个电压20 s还未击穿,则应按表1规定的增量逐级增加电压。 每一次增加的电压应立即且连续施加20s直至发生击穿。 升压要尽可能地快并无任何瞬态过电压,级间升压所用的时间应包括在较高一级电压的20 s期间内。如果击穿发生在从起始试验算起少于6级的电压内,则用更低的起始电压再做5个试样的试验。根据试样能耐受20s而不击穿的高试验电臣来确定电气强度。 慢连升压试验(120~240) s从40%的预计短时击穿电压开始匀速升压,使击穿发生在(120~240) s之间。 对于击穿电压有显著差异的材料来说,有些试样可能在此时间范围以外发生破坏, 如果大多数击穿发生在(120~240) s 之间,则认为是满意的。 选择升压速度时应从下列数据中开始选择:2 /sV儿,5 V/s,10 V/s,20 V/s, 50 V/s,100 V/s,200 V/s,500 V/s,l 000 V/s,等等。 60s逻辑升压试验除非另有规定,应按10. 2进行试验,但每一级中的耐压时间为60 s,极慢速升压试验(300~600) s除非另有规定,应按10.3进行试验,但击穿应发生在(300~600) s之间。 从下列数据中选择升压速度:1V/s,2 V儿,5 V/s,10 V/s,20 V儿,50 V/s,100 V/s,200 V/s,等等。

电压击穿试验仪终止电流定义解析

一、基本定义

‌终止电流‌
指试验过程中设定的电流阈值(通常为毫安级),当被测材料发生击穿时,回路电流骤增至该阈值,触发设备自动停止升压并记录击穿电压值。未击穿状态下,材料的漏电流通常为微安级(1-10μA),击穿瞬间电流会跃升1-2个数量级(如≥1mA),形成判定击穿的明确信号。

二、功能与作用

‌核心判定依据‌
通过监测电流突变识别击穿事件,避免仅依赖电压波动可能导致的误判。

‌安全保护机制‌
触发终止试验后,设备自动切断高压输出并启动放电程序,防止过流损坏传感器或引发电弧危险。

三、参数设置规范

00001. ‌典型阈值范围‌

· 通用型试验仪默认值为5mA,可根据材料导电特性调整至1-20mA。

· 高灵敏度测试场景(如薄膜材料)可降低至0.5mA以提高检测精度。

00002. ‌设置依据‌

材料类型:导电性较强的材料需设定更高的终止电流阈值以避免误触发。测试标准:遵循IEC 60243、GB/T 1408等标准中对电流阈值的具体要求。

四、技术实现

00001. ‌监测技术‌
采用高精度微安表或霍尔传感器实时采集电流信号,结合数字滤波技术消除环境干扰。

00002. ‌联动控制逻辑‌
电流信号经AD转换后输入控制器,通过硬件比较电路与软件算法双重验证,确保判定响应时间<50ms。

附:终止电流与其他参数的关联性

参数

关联机制

典型示例

升压速率

高速升压需匹配更高终止电流

1kV/s对应5mA阈值1

电极形态

电极易引发局部放电,需降低阈值

球-板电极设定3m

环境湿度

湿度>70%时需提高阈值防误判

阈值调整为8m

通过合理设置终止电流参数,可显著提升击穿电压测试的准确性与安全性

电压击穿试验仪应用领域与重要性

一、电压击穿试验仪应用领域

‌电力行业‌

用于高压输电线路、变压器、开关设备的绝缘性能测试,确保设备在高电压环境下的长期稳定运行。

应用于变电站、电网设备的安全性评估,防止因绝缘失效导致的电力系统故障。

‌电子制造业‌

测试电路板、半导体器件等电子产品的绝缘层性能,防止因绝缘缺陷引发的短路或安全事故。评估电容器、电缆等电子元件的耐压能力,保障产品的可靠性和使用寿命。

‌新材料研发‌

分析新型绝缘材料的介电强度和耐压极限,推动高性能材料(如纳米复合材料、高温超导材料)的开发。通过加速老化试验模拟极端环境,研究材料在湿热、机械应力等条件下的绝缘性能退化规律。

‌其他工业领域‌

‌航空航天‌:验证飞机线缆、航天器绝缘部件的电气安全性。

‌汽车电子‌:测试车载电池、电机绝缘系统的可靠性,适应新能源汽车高压化趋势。

‌通讯设备‌:评估5G基站、光纤设备的耐电压性能,确保信号传输稳定性。

二、电压击穿试验仪重要性

‌保障电气安全的核心工具‌

通过精确测定击穿电压,识别绝缘材料的性能边界,避免设备因过压引发火灾、爆炸等事故。

在电力设备制造和检修环节中,作为质量控制的“后防线”,减少因绝缘失效导致的经济损失。

‌推动技术标准化与合规性‌

测试数据是产品符合IEC 60243、GB/T 1408等国际/国内标准的关键依据,直接影响市场准入资格。

为电气设备的设计优化提供量化支撑,例如通过击穿电压值确定绝缘层厚度或材料选型。

‌支持科研与产业升级‌

助力新型绝缘材料的研发,推动电力设备小型化、高效化发展(如超高压变压器、紧凑型开关柜)。

通过长期性能监测数据,建立材料老化模型,为设备寿命预测和预防性维护提供科学依据。

附:典型应用场景与技术需求

领域

测试对象

技术指标要求

电力设备

变压器绝缘纸板

击穿电压≥40kV/mm17

半导体

芯片封装环氧树脂

漏电流≤1μA@10kV

新能源车

动力电池隔膜

耐压强度≥200V/μm

航空航天

耐高温电缆护套

击穿电压稳定性±2%

电压击穿试验仪通过多领域渗透和技术迭代,已成为保障电气安全、驱动产业创新的关键基础设施

电压击穿试验仪操作流程

一、设备准备与安全确认

‌环境与电源检查‌

确保实验室温度控制在15-30℃,湿度<70%,避免环境因素干扰测试精度。

连接电源线(AC 220V±10%),检查接地电阻<4Ω,使用接地棒深度>1.5米。

‌开机与自检‌

按下电源键启动设备,等待30秒完成系统自检,确认触摸屏显示“System Ready”状态。

校准电压示值误差(≤±1%),使用标准分压器验证设备精度。

二、试样安装与参数设置

‌试样处理与安装‌

裁剪试样至标准尺寸(如100×100mm),表面清洁后使用无水乙醇擦拭,去除油污与灰尘。

将试样平铺于绝缘平台,调节上下电极间距至预设值(如1mm),使用千分尺校准精度达±0.01mm。

‌参数配置‌

通过触摸屏选择测试模式:‌连续升压‌:从零开始匀速升压至击穿;

‌步进升压‌:分段施加电压并保持时间。

设置升压速率(0.1-5kV/s)、击穿电流阈值(默认5mA)及初始电压(建议预期击穿值的30%)。

三、测试执行与数据记录

‌启动测试‌

关闭防护门,按下启动键后设备自动升压,实时显示电压-电流曲线。当电流跃升至设定阈值(如≥5mA)或检测到电弧放电时,设备自动停止升压并记录击穿电压值。

‌异常处理‌

若测试中触发过流保护(硬件/软件双重保护),立即切断高压并启动放电程序,待残余电荷释放完毕后方可操作。

四、数据管理与维护

‌结果输出‌

查看主界面历史数据,导出CSV/PDF格式报告或通过热敏打印机输出纸质记录。

报告中需包含环境参数(温湿度)、升压速率、击穿时间及设备序列号等追溯信息。

‌设备维护‌

定期清洁电极表面氧化层,使用砂纸打磨后涂抹绝缘油脂。

每月进行空载试验验证升压稳定性,确保PID控制算法精度≤±2%。

安全注意事项

‌防护措施‌

测试过程中严禁开启防护门,待高压指示灯熄灭且调压器归零后再处理试样。

操作人员需穿戴绝缘手套及护目镜,避免电弧伤害。

‌紧急处理‌

若设备异常报警(如过流、短路),立即按下急停按钮并断开总电源。

通过标准化操作流程与多重安全防护机制,可确保测试结果的准确性与操作人员的安全性

电压击穿试验后试样处理流程

一、安全防护与设备复位

‌断电与放电‌

试验结束后立即关闭高压输出,按下停止键或急停按钮,切断总电源。

等待设备自动放电(约30-60秒),确认高压指示灯熄灭、调压器归零后方可开启防护门。

‌残余电荷释放‌

使用接地棒触碰试样表面,手动释放可能残留的电荷,避免操作人员触电风险。

二、试样检查与记录

‌击穿痕迹分析‌

观察试样表面是否形成贯穿性孔洞、碳化路径或裂纹,使用放大镜或显微镜记录击穿点形态。

测量击穿点直径(精度达0.1mm),标注击穿位置与电极接触区域的距离。

‌异常状态标记‌

若试样未完全击穿但出现局部放电痕迹(如焦斑),需单独分类并标注“非完全击穿”。

三、试样清洁与存储

‌表面清洁‌

用无水乙醇或丙酮擦拭试样表面,清除电极接触区域的氧化残留物或碳化物。

对多次测试的试样,需清洁后烘干(温度≤60℃,时间≥2小时)以恢复初始状态。

‌分类存储‌

已击穿试样单独存放于防静电袋,标注测试参数(如击穿电压、环境温湿度)。

未击穿试样可重复使用,但需记录累计测试次数以避免材料疲劳影响数据准确性。

四、数据整理与设备维护

‌数据导出‌

从设备导出击穿电压、电流曲线及击穿时间等数据,保存为CSV格式并备份。

报告中需包含试样击穿前后的对比照片及环境参数(温度、湿度)。

00001. 

‌电极与设备维护‌

清洁上下电极表面,使用800目砂纸打磨氧化层后涂抹硅脂防锈。

检查绝缘平台是否有击穿残留物,必要时用异丙醇清洗并干燥。

安全注意事项

‌操作规范‌

严禁在未放电或高压未归零时接触试样,穿戴绝缘手套与护目镜操作。

处理多孔或吸湿性材料时,需延长放电时间(≥5分钟)。

通过规范化的试样处理流程,可确保试验数据的可追溯性并延长设备使用寿命

微信图片_20240521082139.png

相关产品

厂商推荐产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消