2025-01-10 17:04:57识别固体制剂生产质量风险点
识别固体制剂生产质量风险点,需关注原料稳定性、配方均匀性、生产环境洁净度、设备运行状态与清洁度、工艺参数控制、包装密封性等。原料杂质、微生物污染是首要风险;配方不均影响药效;生产环境不达标易引入污染物;设备故障或清洁不当导致交叉污染;工艺参数偏离影响产品质量;包装不良则影响药品储存。全面监控这些风险点,采取预防措施,确保固体制剂生产质量。

资源:14372个    浏览:82展开

识别固体制剂生产质量风险点相关内容

产品名称

所在地

价格

供应商

咨询

SPR-DT12A药物溶出仪12杯固体制剂溶出度仪生产厂家
国内 天津
¥88000
天津赛普瑞实验设备有限公司

售全国

我要询价 联系方式
固体制剂水分快速测定仪,固体制剂水分快速检测仪
国内 广东
¥9600
深圳市芬析仪器制造有限公司

售全国

我要询价 联系方式
固体(液体)制剂固含量快速检测仪
国内 广东
面议
深圳市艾瑞斯仪器有限公司

售全国

我要询价 联系方式
冷热冲击试验箱东莞皓天生产测试射灯质量可靠
国内 广东
¥79863
东莞市皓天试验设备有限公司

售全国

我要询价 联系方式
拟茎点霉毒素A固体标准品
国内 山东
面议
青岛普瑞邦生物工程有限公司

售全国

我要询价 联系方式
2025-03-10 13:45:11国产气体罗茨流量计生产要注意哪些关键点?
国产气体罗茨流量计生产 国产气体罗茨流量计作为现代工业中重要的流量计量设备,广泛应用于石油、化工、电力、冶金等行业。这些行业对气体流量的监控要求极高,而罗茨流量计凭借其结构简单、量程宽广、测量等优势,成为了气体流量测量的设备。本文将探讨国产气体罗茨流量计的生产现状、技术优势及未来发展趋势。 气体罗茨流量计的基本工作原理是通过两个相互啮合的叶轮在流体的推动下旋转,从而计量气体流量。与传统的容积式流量计不同,罗茨流量计具有高精度、良好的稳定性和较宽的量程范围,能够测量不同压力、温度下的气体流量。因此,它适用于各种气体的测量,不仅能应对低流量的精密计量,也能满足大流量的需求。 国产气体罗茨流量计的技术优势 近年来,随着国内制造业的快速发展,国产气体罗茨流量计的技术水平逐步与国际先进水平接轨。国内企业在气体罗茨流量计的设计与生产过程中,注重关键技术的自主创新。例如,流量计内部的转子采用高精度加工,确保其运转平稳,减少了摩擦损耗,提升了测量精度和使用寿命。 国产气体罗茨流量计在流量测量的稳定性方面也得到了显著提升。通过先进的控制算法,国内制造商能够有效解决传统流量计在高温、高压、脉动流体等复杂工况下的不稳定性问题。尤其是在石油、天然气等行业,罗茨流量计能够精确测量流体流量,保证生产过程的安全与高效运行。 国产气体罗茨流量计的性价比也具备竞争力。由于制造成本的降低,国产设备在价格上通常比进口设备更加有优势,为企业降低了投资成本。结合国产流量计的高性能,其市场接受度不断提高,逐渐占据了国内市场的主导地位。 国产气体罗茨流量计的生产现状与挑战 尽管国产气体罗茨流量计的技术已经取得显著进展,但在生产过程中仍然面临一些挑战。由于国内相关技术标准与国际标准存在差距,部分高端流量计的精度和稳定性尚不能完全与国际品牌竞争。在核心原材料和高端制造工艺方面,国内企业仍然有一定的依赖性,特别是在精密机械加工和高级传感器技术的应用上,需要进一步突破。 随着我国制造业的不断升级和技术研发的深入,这些问题有望逐步得到解决。国家对高端制造业的支持和投资,也为国产气体罗茨流量计的技术革新和生产能力的提升提供了有力保障。 未来发展趋势 未来,国产气体罗茨流量计的发展将呈现出智能化、精细化的趋势。随着物联网、大数据和人工智能技术的不断发展,气体流量计将不再仅仅是一个单纯的流量测量工具,而是一个集成了实时监测、数据分析、远程控制等多功能的智能设备。这将进一步提升流量计的使用效率与智能化水平,为工业生产提供更加精确的计量支持。 国产气体罗茨流量计在技术研发、生产能力、性价比等方面都表现出强大的竞争力。随着国产流量计技术的不断进步和完善,未来将能够在更广泛的行业中发挥重要作用,为我国制造业的发展贡献力量。
157人看过
2025-06-12 11:00:24运算放大器怎么识别
运算放大器怎么识别:基础知识与识别技巧 运算放大器(Op-Amp)作为电子电路中不可或缺的重要元件,广泛应用于信号放大、滤波、信号处理等领域。对于许多初学者来说,如何正确识别运算放大器以及其在电路中的作用仍然是一个难题。本文将从运算放大器的基本概念入手,详细介绍如何识别运算放大器,并结合实际应用给出相关的识别技巧,帮助读者更好地理解这一电子元件在电路中的功能与作用。 运算放大器的基本概念 运算放大器是一种高增益的电子放大器,通常用于实现各种数学运算,如加法、减法、积分、微分等。它通常具有两个输入端(反相输入和非反相输入)和一个输出端,通过对输入信号的放大来输出相应的结果。运算放大器的增益通常非常高,能够放大微弱的输入信号,使其适用于精密测量和控制系统。 如何识别运算放大器 要识别一个运算放大器,首先需要掌握其常见的引脚排列和功能。运算放大器通常有8个引脚,其中四个引脚分别用于电源(正电源、负电源)和输出端,另外四个引脚分别是反相输入、非反相输入和两个用于其他功能的控制引脚。常见的运算放大器如LM741、TL081、NE5532等,它们的外形通常为DIP-8封装或SOIC封装。 在电路板上,运算放大器常常与其他电子元件一同使用,因此通过查看元件的型号和封装,可以初步判断其是否为运算放大器。可以通过运算放大器的工作特性来辅助识别,例如其输入端与输出端的电压差会影响输出信号的变化。 电路中如何辨识运算放大器 除了外观和型号,运算放大器的工作方式也可以帮助我们进一步辨识它。在实际应用中,运算放大器通常作为信号放大或运算电路的核心部分,因此可以根据其在电路中的功能进行判断。若电路中存在负反馈且具有高增益的特性,基本可以确认该元件为运算放大器。 注意事项 在识别运算放大器时,我们需要关注一些细节。不同型号的运算放大器在引脚功能和排列上可能有所不同,因此一定要查阅相关数据手册,以确保正确识别。由于运算放大器在不同应用中的表现差异较大,有时还需考虑其在电路中的实际表现,如增益特性、输入阻抗和输出阻抗等参数。 结论 识别运算放大器不仅仅是识别其外观和型号,更要了解其在电路中的作用和工作原理。通过掌握基本的识别技巧和运算放大器的工作特性,能够帮助工程师和爱好者快速定位和判断电路中的运算放大器,从而提高电路设计和故障排查的效率。
142人看过
2024-10-18 17:31:52如何排查识别自动进样器故障?
常见的自动进样器故障类型进样不准或漏样 自动进样器的核心功能是准确采样并传输到分析仪器。如果进样不准或出现漏样,可能会导致实验数据失真。这类故障的常见原因包括进样针的堵塞、样品瓶密封不良或进样器的机械磨损。样品污染 样品污染通常会引起数据异常,尤其是当同一设备处理多个样品时。如何诊断自动进样器故障针对自动进样器的故障,首先需要进行全面的诊断。常见的故障排查步骤包括:检查样品瓶和密封性:确保样品瓶和瓶盖完好无损,避免因密封性不良引起的漏样。校准进样针:定期校准进样针的定位和操作,确保其能够准确穿刺和采样。设备日志检查:查看设备运行日志,分析是否存在错误代码或异常操作记录。设备清洁和保养:确保定期对自动进样器的样品通道和相关部件进行彻底清洁,避免样品交叉污染。解决自动进样器故障的方法定期维护和更换易损件 针对自动进样器的磨损部件,实验室应建立定期维护计划,及时更换如进样针、密封圈等易损件,确保设备处于良好状态。软件升级与故障排查 定期检查自动进样器的软件版本,确保设备使用的控制系统。培训实验室人员正确操作软件,减少因设置不当导致的故障。
195人看过
2022-12-06 13:14:13应用简报:直接测量细胞代谢以识别线粒体药物靶点
前言药物靶点识别在药物发现价值链中起到关键作用。药物开发的关键步骤是识别潜在候选药物的直接靶点并区分任何继发或脱靶效应。药物靶点识别的方法之一是表型筛选,涉及向细胞(或较小的模型生物)中添加化合物并测量对目标表型或细胞活性的影响1。对于对表型或细胞功能具有所期望的影响的化合物,必须识别活性化合物直接扰乱的基因或基因产物(即,靶点)。因此,药物开发的关键步骤是识别活性化合物的直接靶点以及该化合物可能影响进一步开发的任何继发或脱靶效应。图 1. 按年份绘制的 PubMed 中包括关键词“线粒体”、“药物”和“靶点”的出版物的数量近年来,已经确定线粒体和细胞代谢过程除具有众所周知的底物氧化和 ATP 生成作用以外,还是细胞分化、细胞增殖、免疫细胞应答、缺氧感受和细胞凋亡的核心2-4。实际上,线粒体和代谢功能障碍越来越多地与众多病理联系在一起,其中包括癌症、免疫细胞和系统疾病、神经退化、心脏病、肥胖和糖尿病以及衰老过程5-7。于是,人们对线粒体和代谢药物靶点的关注大幅增加(图 1)。因此,相应地需要对代谢通路功能进行高灵敏度直接测量,以阐明潜在候选药物的特异性(及任何可能的非特异性)靶点。安捷伦 Seahorse XF Pro 分析仪以多孔板形式直接测量活细胞中的线粒体呼吸和细胞代谢。因此,该系统是用于检测以线粒体和其他代谢通路(如糖酵解)为靶标的药物的功能效应的理想选择。本应用简报提供了可用于代谢靶点识别研究的Seahorse XF 应用和工作流程的总体概述。未来,本系列应用简报将探讨如何使用这些分析来阐明药物化合物的特异性和非特异性靶点的有趣案例。用于线粒体和代谢药物靶点识别的 Seahorse XF 工作流程本工作流程分为一系列分析,旨在解答以下主要问题:1. 化合物是否影响线粒体或代谢功能?2. 化合物的特异性靶点是什么?3. 是否存在任何非特异性或脱靶效应?对于在表型筛选中表现为有效的化合物(例如,药物 X),执行安捷伦 Seahorse XF 细胞线粒体压力测试 (MST) 以确定化合物是否影响线粒体功能8, 9。该分析通过测定耗氧率(图 2,左图),对线粒体呼吸的几个关键参数进行了检测。其中发生变化的参数(以及变化幅度)提供了有关化合物是否改变线粒体功能的信息10, 11。该分析的结果还可以确定后续最适合采用哪种类型的 XF 分析设计来采集更具体的信息(包括药物靶点识别)。例如对于药物 X,该工作流程将应用于众所周知的线粒体丙酮酸载体抑 制剂 UK509910。图 2(右图)显示了在缺乏和存在 UK5099 时的 MST 结果。数据表明,UK5099 确实影响线粒体功能,表现在基础呼吸速率和最 大呼吸速率均有所下降。药物 X 是否影响线粒体功能?图 2. 左图:安捷伦 Seahorse XF 细胞线粒体压力测试分析设计和输出参数;右图:用 UK5099 对细胞进行预处理后的 MST接下来,必须考虑代谢的哪些部分可能会驱动这种变化。UK5099 的 MST 图谱表明,在底物氧化和/或电子传递链/氧化磷酸化通路中发生了功能障碍11。这些通路包括底物转运和速率控制蛋白质和酶的活性,包括谷氨酰胺酶、CPT1a、丙酮酸脱氢酶 (PDH)、TCA 循环酶、电子传递和氧化磷酸化机制。为确定 UK5099 的效果,使用安捷伦 Seahorse XF 细胞膜通透剂 (PMP)。细胞膜透化使得提供的底物可直接进入线粒体中,而无须将线粒体与细胞物理分离10, 12, 13。由于不同的可氧化底物参与不同的代谢通路,因此提供了特定底物的透性化细胞的呼吸速率可用于识别靶点,这些靶点在受到调节后引起可在完整细胞中观察到的线粒体呼吸变化。图 3 简单概述了丙酮酸、谷氨酸和琥珀酸的底物依赖性通路,更多信息参见参考文献10 的图 S3。因此,工作流程中的下一步 XF 分析是在存在和缺乏候选药物UK5099 的情况下将这三种底物分别提供给透性化细胞。如图 4 所示,UK5099 仅在丙酮酸作为底物时阻止呼吸;向各种类型的透性化细胞(HskMM、NRVM 和原代皮层神经元)提供谷氨酸或琥珀酸时无效。总而言之,这些结果表明:呼吸复合物 I 和复合物 II 都不是 UK5099 的靶点,并且 UK5099 对呼吸的抑 制必定位于复合物 I 和 TCA 循环的上游,因为谷氨酸(复合物 I 底物)或琥珀酸(TCA/复合物 II 底物)氧化都不受影响。此外,这些结果还表明丙酮酸脱氢酶 (PDH) 或线粒体丙酮酸载体 (MPC) 可能是 UK5099 的靶点。然后可以进一步分析透性化细胞和替代底物以区分 PDH 和 MPC,如同证明 MPC 是 UK5099 的特异性靶点一样10。图 3. 丙酮酸、谷氨酸和琥珀酸线粒体氧化通路的简单示意图。复合物 I 和复合物 II 底物和通路分别显示为红色和蓝色。请注意:丙酮酸和谷氨酸都提供 NADH 给 CI,而琥珀酸提供FADH2 给 CII。MPC:线粒体丙酮酸载体;PDH:丙酮酸脱氢酶。为清楚起见,省略了复合物 V 及其他氧化磷酸化组分图 4. 提供丙酮酸 (Pyr)/苹果酸、谷氨酸 (Glu)/苹果酸或琥珀酸 (Succ)/鱼藤酮作为唯 一底物的透化性细胞的呼吸;UK5099 仅抑 制丙酮酸驱动的呼吸。HSkMM:人骨骼肌成肌细胞;NRVM:新生大鼠心室肌细胞;皮层神经元:大鼠原代皮层神经元。摘自参考文献 11总结我们对代谢作用的理解已经从简单的“管家”演变为许多正常和疾病状态的核心参与者。在活细胞中检测化合物对线粒体功能和代谢表型的影响,提供了一条识别代谢调节靶点的通路。此方法补充了其他方法,例如以信号转导通路和细胞受体为靶标的方法。除 ETC 和氧化磷酸化以外,本文所概述的示例强调了考虑多条线粒体通路(包括底物转运和线粒体酶活性)的重要性。通过将线粒体和代谢功能的直接基于细胞的测量结合到药物靶点识别研究中,可以获得有关化合物的特异性和非特异性效应的重要见解。参考文献1. Schenone, M., et al., Target identification and mechanism of action in chemical biology and drug discovery. Nature chemical biology, 2013. 9(4): p. 232–2402. Dimeloe, S., et al., T-cell metabolism governing activation,proliferation and differentiation; a modular view.Immunology, 2017. 150(1): p. 35–443. Ochocki, J.D. and M.C. Simon, Nutrient-sensing pathways and metabolic regulation in stem cells. The Journal of Cell Biology, 2013. 203(1): p. 23–334. Smith, R.A., et al., Mitochondrial pharmacology. TrendsPharmacological Sciences, 2012. 33(6): p. 341–525. Galluzzi, L., et al., Metabolic targets for cancer therapy.Nature Reviews Drug Discovery, 2013. 12: p. 8296. Lee, J., Mitochondrial drug targets in neurodegenerative diseases. Bioorg Med Chem Lett, 2016. 26(3): p. 714-7207. Wang, W., G. Karamanlidis, and R. Tian, Novel targets for mitochondrial medicine.Science Translational Medicine,2016. 8(326): p. 326rv38. Wills, L.P., et al., Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay. Toxicol Sci, 2015. 146(2): p. 226-349. Sanuki, Y., et al., A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism. The Journal of Toxicological Sciences, 2017. 42(3): p. 349–35810. Divakaruni, A.S., et al., Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proceedings of the National Academy of Sciences, 2013. 110(14): p.5422–542711. Divakaruni, A.S., et al., Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol, 2014. 547: p. 309–35412. Divakaruni, A.S., et al., Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis. Cell Metabolism, 2018. 28(3): p. 490–503.e713. Divakaruni, A.S., G.W. Rogers, and A.N. Murphy, Measuring Mitochondrial Function in Permeabilized Cells Using the Seahorse XF Analyzer or a Clark-Type Oxygen Electrode.Current protocols in toxicology, 2014.60: p. 25.2.1–25.2.16
301人看过
2025-02-11 12:45:12ATP荧光检测仪怎么检测固体
ATP荧光检测仪怎么检测固体 ATP荧光检测仪广泛应用于环境监测、食品安全、医疗卫生等多个领域,用于检测表面及物体上是否存在ATP(腺苷三磷酸)。ATP是所有生物体内的能量源,因其在微生物、细胞等生物体内普遍存在,成为了检测微生物污染和清洁度的重要指标。虽然ATP荧光检测仪常用于液体样本的检测,但其同样适用于固体表面的ATP检测,尤其是在工业、实验室等场景中,对于固体表面的微生物清洁度监测至关重要。本文将详细解析ATP荧光检测仪如何有效地检测固体样本。 ATP荧光检测仪的工作原理是基于荧光反应,通过荧光素酶与ATP结合后发射荧光信号,这一信号的强弱直接与样本中ATP的含量成正比。在固体检测时,首先需要对固体表面进行取样或直接接触,这通常通过专门的采样拭子或接触垫进行。取样后,拭子或垫子会被放入检测仪器中,仪器通过测量荧光信号的强弱,准确判断样本中ATP的浓度,从而推测出表面微生物的数量和污染程度。 在固体表面的检测过程中,样品的处理至关重要。例如,某些表面由于附着的物质或污染物可能会影响ATP的释放,导致检测结果的不准确。因此,采用合适的取样方法和优化检测流程是提高检测精度的关键。为了确保检测结果的准确性,许多ATP荧光检测仪都设计有不同的适应模式,能够根据固体表面的类型调整测试参数,大限度地减少外部因素的干扰。 ATP荧光检测仪在固体表面检测中的应用,需要依赖先进的技术和科学的方法。在实际使用中,需根据固体的特性选择适当的取样方式,保证检测结果的准确性和可靠性。
123人看过
医疗卫生制药领域
共价有机骨架(COFs)
实验室数据管理
荧光定量技术
工业绿色低碳升级改造
nGauge便携式原子力显微镜
浅谈原料药中的物性分析
光纤照明系统
金刚石抛光
GENE-UP系统
土壤中重金属分析检测技术
pH和电导率分析传感器
自动化及智能化解决方案
瑞士万通874全自动卡氏加热炉
安东帕微波消解用户培训
MassHunter豪华数据包
T960 全自动滴定仪
工业水效提升改造
浸入式恒温循环器:
稀土掺杂发光纳米材料
复合膜抗摆锤冲击试验仪
3D打印透镜
石油产品水分测定
光栅耦合干涉(GCI)技术
器件 - 微纳光学器件检测
GF重力下落式金属检测机
工业节水装备
蛋白与细胞分析
气体吸附在催化剂表征中的应用
卡氏加热炉
分子生物学
固相细胞计数
加油站油气回收检测
实验室规范化
真空式灭菌器
农残智能判读数据处理方案