仪器网(yiqi.com)欢迎您!

| 注册2 登录
网站首页-资讯-专题- 微头条-话题-产品- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-方案-产品库- 视频

技术中心

当前位置:仪器网>技术中心> 应用方案> 正文

BDM编委维克森林大学 James J. Yoo 团队 | 具有培养条件和组织健康实时监测功能的多功能单轴生物反应器的开发

来源:上海幂方电子科技有限公司 更新时间:2025-05-07 09:15:15 阅读量:69
导读:内容简介本研究论文聚焦具有培养条件和组织健康实时监测功能的多功能单轴生物反应器的开发。生物反应器通过动态调控

内容简介


本研究论文聚焦具有培养条件和组织健康实时监测功能的多功能单轴生物反应器的开发。生物反应器通过动态调控工程化组织,使其在体内植入前达到所需的成熟度。将传感器和成像功能整合至生物反应器中有助于理解培养环境如何影响组织成熟与生长,同时为组织构建体提供监测和质量控制的关键信息。本研究旨在开发一种标准化、自包含的单轴生物反应器模块,用于临床组织构建体的制造;该系统通过单向机械或电刺激(或两者结合)优化培养环境并提升组织制造效率。该单轴生物反应器模块集成了用户友好的机械与电刺激功能及力测量系统,以增强工程化组织的预处理能力。此外,传感器环路和培养基交换系统可实时监测培养环境及细胞代谢物,且位于组织构建体上方的摄像头系统可实现组织成熟的宏观可视化。系统内置的培养基交换程序可长期维持无菌培养条件。通过使用天然骨骼肌组织和组织工程化的骨骼肌构建体,验证了该单轴生物反应器模块在预处理和促进组织成熟方面的性能。


引用本文(点击最下方阅读原文可下载PDF)

Mehta A, Lee PF, Renteria E, et al., 2025. Development of a multifunctional uniaxial bioreactor with real-time monitoring of culture conditions and tissue health. Bio-des Manuf 8(2):310–330. https://doi.org/10.1631/bdm.2400235

文章导读



图1 图摘要


图2 机械刺激系统


图3 电刺激系统


图4 力传感器的集成


图5 基于长期培养的免疫组织化学图像分析

参考文献

上下滑动以阅览

1. Schaechter M (2009) Encyclopedia of Microbiology (3rd Ed.). Elsevier/Academic Press, Tokyo. https://doi.org/10.1016/B978-012373944-5

2. Partap S, Plunkett NA, O’brien FJ (2010) Bioreactors in tissue engineering. In: Daniel E (Ed.), Tissue Engineering. IntechOpen, p.323–337. https://doi.org/10.5772/8579

3. Antoni D, Burckel H, Josset E et al (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16(3):5517–5527. https://doi.org/10.3390/ijms16035517

4. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86. https://doi.org/10.1016/j.tibtech.2003.12.001

5. Grayson WL, Martens TP, Eng GM et al (2009) Biomimetic approach to tissue engineering. Semin Cell Dev Biol 20(6):665–673. https://doi.org/10.1016/j.semcdb.2008.12.008

6. Bertucci C, Koppes R, Dumont C (2019) Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull 152:265–284. https://doi.org/10.1016/j.brainresbull.2019.07.016

7. Castro N, Ribeiro SO, Fernandes MM et al (2020) Physically active bioreactors for tissue engineering applications. Adv Biosyst 4(10):e2000125. https://doi.org/10.1002/adbi.202000125

8. Rangarajan S, Madden L, Bursac N (2014) Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles. Ann Biomed Eng 42(7):1391–1405. https://doi.org/10.1007/s10439-013-0966-4

9. Ravichandran, A, Liu YC, Teoh SH (2018) Bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regener Med 12(1):e7–e22. https://doi.org/10.1002/term.2270

10. Lim D, Renteria ES, Sime DS et al (2022) Bioreactor design and validation for manufacturing strategies in tissue engineering. Bio-Des Manuf 5(1):43–63. https://doi.org/10.1007/s42242-021-00154-3

11. Massai D, Meglio FD, Serino G et al (2019) Application of 3D printing technology for design and manufacturing of customized components for a mechanical stretching bioreactor. J Healthc Eng 2019(1):3957931. https://doi.org/10.1155/2019/3957931

12. Carbonaro D, Putame G, Castaldo C et al (2020) A low-cost scalable 3D-printed sample-holder for agitation-based decellularization of biological tissues. Med Eng Phys 85:7–15. https://doi.org/10.1016/j.medengphy.2020.09.006

13. Musgrove HB, Catterton MA, Pompano RR (2022) Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Anal Chim Acta 1209:339842. https://doi.org/10.1016/j.aca.2022.339842

14. Bayarsaikhan E, Lim JH, Shin SH et al (2021) Effects of post-curing temperature on the mechanical properties and biocompatibility of three-dimensional printed dental resin material. Polymers 13(8):1180. https://doi.org/10.3390/polym13081180

15. Jer?ovait? J, ?arachovait? U, Matulaitien? I et al (2023) Biocompatibility enhancement via post-processing of microporous scaffolds made by optical 3D printer. Front Bioeng Biotechnol 11: 1167753. https://doi.org/10.3389/fbioe.2023.1167753

16. Abousleiman RI, Sikavitsas VI (2006) Bioreactors for tissues of the musculoskeletal system. Adv Exp Med Biol 585:243–259. https://doi.org/10.1007/978-0-387-34133-0_17

17. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195. https://doi.org/10.1007/s00223-014-9915-y

18. Smoak MM, Mikos AG (2020) Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater Today Bio 7:100069. https://doi.org/10.1016/j.mtbio.2020.100069

19. Heher P, Maleiner B, Prüller J et al (2015) A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater 24:251–265. https://doi.org/10.1016/j.actbio.2015.06.033

20. Cook CA, Huri PY, Ginn BP et al (2016) Characterization of a novel bioreactor system for 3D cellular mechanobiology studies. Biotechnol Bioeng 113(8):1825–1837. https://doi.org/10.1002/bit.25946

21. Mantero S, Sadr N, Riboldi SA et al (2007) A new electromechanical bioreactor for soft tissue engineering. J Appl Biomater Biomech 5(2):107–116.

22. Powell CA, Smiley BL, Mills J et al (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283(5):C1557–C1565. https://doi.org/10.1152/ajpcell.00595.2001

23. Chang YJ, Chen YJ, Huang CW et al (2016) Cyclic stretch facilitates myogenesis in C2C12 myoblasts and rescues thiazolidinedione inhibited myotube formation. Front Bioeng Biotechnol 4:27. https://doi.org/10.3389/fbioe.2016.00027

24. Pisanu A, Reid G, Fusco D et al (2022) Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor. iScience 25(5):104297. https://doi.org/10.1016/j.isci.2022.104297

25. Putame G, Gabetti S, Carbonaro D et al (2020) Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs. Med Eng Phys 84:1–9. https://doi.org/10.1016/j.medengphy.2020.07.018

26. Pang QM, Zu JW, Siu GM et al (2010) Design and development of a novel biostretch apparatus for tissue engineering. J Biomech Eng 132(1):014503. https://doi.org/10.1115/1.3005154

27. Wu MH, Wang HY, Liu HL et al (2011) Development of high-throughput perfusion-based microbioreactor platform capable of providing tunable dynamic tensile loading to cells and its application for the study of bovine articular chondrocytes. Biomed Microdev 13(4):789–798. https://doi.org/10.1007/s10544-011-9549-z

28. Cole K, Henano N, Miller T et al (2015) Mechanical and Electrical Stimulation Device for the Creation of a Functional Unit of Human Skeletal Muscle In Vitro. Worcester Polytechnic Institute, Worcester, MA, USA, Project No. RLP-1401

29. Aguilar-Agon KW, Capel AJ, Martin NRW et al (2019) Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: molecular and phenotypic responses. J Cell Physiol 234(12):23547–23558. https://doi.org/10.1002/jcp.28923

30. Wang T, Gardiner BS, Lin Z et al (2013) Bioreactor design for tendon/ligament engineering. Tissue Eng Part B Rev 19(2):133–146. https://doi.org/10.1089/ten.TEB.2012.0295

31. Chen ZM, Chen PL, Ruan R et al (2020) Applying a three-dimensional uniaxial mechanical stimulation bioreactor system to induce tenogenic differentiation of tendon-derived stem cells. J Vis Exp 2020(162):e61278. https://doi.org/10.3791/61278

32. Béland J, Duverger JE, Petitjean E et al (2020). Development of an open hardware bioreactor for optimized cardiac cell culture integrating programmable mechanical and electrical stimulations. AIP Adv 10(3):035133. https://doi.org/10.1063/1.5144922

33. Donnelly K, Alastair K, Andrew P et al (2010) A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng Part C Methods 16(4):711–718. https://doi.org/10.1089/ten.tec.2009.0125

34. Zheng XS, Tan C, Castagnola E et al (2021) Electrode materials for chronic electrical microstimulation. Adv Healthc Mater 10(12): e2100119. https://doi.org/10.1002/adhm.202100119

35. Tandon N, Cannizzaro C, Chao PHG et al (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4(2):155–173. https://doi.org/10.1038/nprot.2008.183

36. Mobini S, Leppik L, Parameswaran TV et al (2017) In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 5:e2821. https://doi.org/10.7717/peerj.2821

37. Park KH, Brotto L, Lehoang O et al (2012) Ex vivo assessment of contractility, fatigability and alternans in isolated skeletal muscles. J Vis Exp 69:e4198. https://doi.org/10.3791/4198

38. Dennis RG, Kosnik PE (2000) Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 36(5):327–335. https://doi.org/10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2

39. Morgan KY, Black LD (2014) Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 20(11–12):1654–1667. https://doi.org/10.1089/ten.TEA.2013.0355

40. Gilbert-Honick J (2020). Engineering Skeletal Muscle for Histological and Functional Regeneration Following Volumetric Muscle Loss. Doctoral Dissertation, Johns Hopkins University, USA

41. Khodabukus A, Baar K (2012) Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods 18(5): 349–357. https://doi.org/10.1089/ten.TEC.2011.0364

42. McMahon DK, Anderson PA, Nassar R et al (1994) C2C12 cells: biophysical, biochemical, and immunocytochemical properties. Am J Physiol 266(6 Pt 1):C1795–C1802. https://doi.org/10.1152/ajpcell.1994.266.6.C1795

43. Hofemeier AD, Limon T, Muenker TM et al (2021) Global and local tension measurements in biomimetic skeletal muscle tissues reveals early mechanical homeostasis. eLife 10:e60145. https://doi.org/10.7554/eLife.60145

44. Yoshioka K, Ito A, Arifuzzaman M et al (2021) Miniaturized skeletal muscle tissue fabrication for measuring contractile activity. J Biosci Bioeng 131(4):434–441. https://doi.org/10.1016/j.jbiosc.2020.11.014

45. Wang BW, Wang ZW, Chen T et al (2020) Development of novel bioreactor control systems based on smart sensors and actuators. Front Bioeng Biotechnol 8:7. https://doi.org/10.3389/fbioe.2020.00007

46. Akiyama Y, Nakayama A, Nakano S et al (2021) An electrical stimulation culture system for daily maintenance-free muscle tissue production. Cyborg Bionic Syst 2021:9820505. https://doi.org/10.34133/2021/9820505

47. Wheatley BB, Morrow DA, Odegard GM et al (2016) Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity. J Mechan Behav Biomed Mater 53:445–454. https://doi.org/10.1016/j.jmbbm.2015.08.041

48. ?orovi? S, Pavlin M, Miklav?i? D (2007) Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. BioMed Eng OnLine 6:37. https://doi.org/10.1186/1475-925X-6-37

49. Gabetti S, Sileo A, Montrone F et al (2023) Versatile electrical stimulator for cardiac tissue engineering—investigation of charge-balanced monophasic and biphasic electrical stimulations. Front Bioeng Biotechnol 10:1031183. https://doi.org/10.3389/fbioe.2022.1031183

50. Prill S, Jaeger MS, Duschl C (2014) Long-term microfluidic glucose and lactate monitoring in hepatic cell culture. Biomicrofluidics 8(3):034102. https://doi.org/10.1063/1.4876639

51. Somers SM, Spector AA, DiGirolamo DJ et al (2017) Biophysical stimulation for engineering functional skeletal muscle. Tissue Eng Part B Rev 23(4):362–372. https://doi.org/10.1089/ten.TEB.2016.0444

52. Pennisi CP, Olesen CG, Zee M et al (2011) Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Eng Part A 17(19–20):2543–2550. https://doi.org/10.1089/ten.TEA.2011.0089

53. Tandon N, C Cannizzaro, Figallo E et al (2006) Characterization of electrical stimulation electrodes for cardiac tissue engineering. In: International Conference of the IEEE Engineering in Medicine and Biology Society, p.845–848. https://doi.org/10.1109/IEMBS.2006.259747

54. Cannizzaro C, Tandon N, Figallo E et al (2007) Practical aspects of cardiac tissue engineering with electrical stimulation. Methods Mol Med 140:291–307. https://doi.org/10.1007/978-1-59745-443-8_16

55. Kim H, Kim MC, Asada HH (2019) Extracellular matrix remodelling induced by alternating electrical and mechanical stimulations increases the contraction of engineered skeletal muscle tissues. Sci Rep 9(1):2732. https://doi.org/10.1038/s41598-019-39522-6

56. Guimar?es CF, Gasperini L, Marques AP et al (2020) The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 5(5):351–370. https://doi.org/10.1038/s41578-019-0169-1

57. Turner DC, Kasper AM, Seaborne RA et al (2019) Exercising bioengineered skeletal muscle in vitro: biopsy to bioreactor. Methods Mol Biol 1889:55–79. https://doi.org/10.1007/978-1-4939-8897-6_5

58. Roberts IV, Donno R, Galli F et al (2022) The contracture-in-a-well. An in vitro model distinguishes bulk and interfacial processes of irreversible (fibrotic) cell-mediated contraction. Biomater Adv 133:112661. https://doi.org/10.1016/j.msec.2022.112661

59. Ouyang XL, Xie YF, Wang GH (2019) Mechanical stimulation promotes the proliferation and the cartilage phenotype of mesenchymal stem cells and chondrocytes co-cultured in vitro. Biomed Pharmacother 117:109146. https://doi.org/10.1016/j.biopha.2019.109146

60. Fonseca FRM, Carvalho óSN, Gasik M et al (2023) Mechanical stimulation devices for mechanobiology studies: a market, literature, and patents review. Bio-Des Manuf 6(3):340–371. https://doi.org/10.1007/s42242-023-00232-8

61. Vallejo J, Spence M, Cheng AL et al (2016) Cellular and physiological effects of dietary supplementation with β-hydroxy-β-methylbutyrate (HMB) and β-alanine in late middle-aged mice. PLoS ONE 11(3):e0150066. https://doi.org/10.1371/journal.pone.0150066

62. Chan S, Head SI (2010) Age-and gender-related changes in contractile properties of non-atrophied EDL muscle. PLoS ONE 5(8):e12345. https://doi.org/10.1371/journal.pone.0012345

63. Somers SM, Grayson WL (2021) Protocol for the use of a novel bioreactor system for hydrated mechanical testing, strained sterile culture, and force of contraction measurement of tissue engineered muscle constructs. Front Cell Dev Biol 9:661036. https://doi.org/10.3389/fcell.2021.661036

64. Meinert C, Schrobback K, Hutmacher DW et al (2017) A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Sci Rep 7(1): 16997. https://doi.org/10.1038/s41598-017-16523-x

65. Rizzuto E, Carosio S, Faraldi M et al (2016) A DIC based technique to measure the contraction of a skeletal muscle engineered tissue. Appl Bionics Biomech 2016:7465095. https://doi.org/10.1155/2016/7465095

66. Tsai HF, Cheng JY, Chang HF et al (2016) Uniform electric field generation in circular multi-well culture plates using polymeric inserts. Sci Rep 6(1):26222. https://doi.org/10.1038/srep26222

67. Chen C, Bai X, Ding YH et al (2019) Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 23:25. https://doi.org/10.1186/s40824-019-0176-8

68. Meng SY, Rouabhia M, Zhang Z (2021) Electrical stimulation and cellular behaviors in electric field in biomedical research. Materials 15(1):165. https://doi.org/10.3390/ma15010165

69. Reardon KF (2021) Practical monitoring technologies for cells and substrates in biomanufacturing. Curr Opin Biotechnol 71: 225–230. https://doi.org/10.1016/j.copbio.2021.08.006

70. Ferrari E, Palma C, Vesentini S et al (2020) Integrating biosensors in organs-on-chip devices: a perspective on current strategies to monitor microphysiological systems. Biosensors 10(9): 110. https://doi.org/10.3390/bios10090110

71. Kieninger J, Weltin A, Flamm H et al (2018) Microsensor systems for cell metabolism–from 2D culture to organ-on-chip. Lab Chip 18(9):1274–1291. https://doi.org/10.1039/c7lc00942a

72. Koike H, Kubota K, Sekine K et al (2012) Establishment of automated culture system for murine induced pluripotent stem cells. BMC Biotechnol 12(1):81. https://doi.org/10.1186/1472-6750-12-81

73. Lovecchio J, Gargiulo P, Vargas Luna JL et al (2019) A standalone bioreactor system to deliver compressive load under perfusion flow to hBMSC-seeded 3D chitosan-graphene templates. Sci Rep 9(1):16854. https://doi.org/10.1038/s41598-019-53319-7

74. Smith LR, Meyer GA (2020) Skeletal muscle explants: ex-vivo models to study cellular behavior in a complex tissue environment. Connect Tissue Res 61(3–4):248–261. https://doi.org/10.1080/03008207.2019.1662409

75. Leijendekker W, Elzinga G (1990) Metabolic recovery of mouse extensor digitorum longus and soleus muscle. Pflügers Archiv 416(1–2):22–27. https://doi.org/10.1007/BF00370217

76. Nagashima T, Hadiwidjaja S, Ohsumi S et al (2020) In vitro model of human skeletal muscle tissues with contractility fabricated by immortalized human myogenic cells. Adv Biosyst 4(11): e2000121. https://doi.org/10.1002/adbi.202000121

77. Grant L, Raman R, Cvetkovic C et al (2019) Long-term cryopreservation and revival of tissue-engineered skeletal muscle. Tissue Eng Part A 25(13–14):1023–1036. https://doi.org/10.1089/ten.tea.2018.0202

78. Shimizu K, Ohsumi S, Kishida T et al (2020) Fabrication of contractile skeletal muscle tissues using directly converted myoblasts from human fibroblasts. J Biosci Bioeng 129(5):632–637. https://doi.org/10.1016/j.jbiosc.2019.11.013

79. Fleming JW, Capel AJ, Rimington RP et al (2020) Bioengineered human skeletal muscle capable of functional regeneration. BMC Biol 18(1):145. https://doi.org/10.1186/s12915-020-00884-3

80. Somers SM, Zhang NY, Morrissette-McAlmon JBF et al (2019) Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes. Acta Biomater 94:232–242. https://doi.org/10.1016/j.actbio.2019.06.024

81. Wragg NM, Player DJ, Martin NRW et al (2019) Development of tissue-engineered skeletal muscle manufacturing variables. Biotechnol Bioeng 116(9):2364–2376. https://doi.org/10.1002/bit.27074

82. Khodabukus A, Madden L, Prabhu NK et al (2019) Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 198:259–269. https://doi.org/10.1016/j.biomaterials.2018.08.058

83. Liu LQ, Zhang C, Wang WX et al (2018) Regulation of C2C12 differentiation and control of the beating dynamics of contractile cells for a muscle-driven biosyncretic crawler by electrical stimulation. Soft Robot 5(6):748–760. https://doi.org/10.1089/soro.2018.0017

84. Shimizu K, Genma R, Gotou Y et al (2017) Three-dimensional culture model of skeletal muscle tissue with atrophy induced by dexamethasone. Bioengineering 4(2):56. https://doi.org/10.3390/bioengineering4020056

85. Fleming JW, Capel AJ, Rimington RP et al (2019) Functional regeneration of tissue engineered skeletal muscle in vitro is dependent on the inclusion of basement membrane proteins. Cytoskeleton 76(6):371–382. https://doi.org/10.1002/cm.21553

86. Jones MG, Andriotis OG, Roberts JJW et al (2018) Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. eLife 7:e36354. https://doi.org/10.7554/eLife.36354


推荐阅读
无像素防水表皮电子:开启人机集成通往元宇宙的新路径
三重响应水凝胶:打造皮肤接口电子健康管理
黄维院士团队新突破,睡眠呼吸监测柔性传感器
柔性电子 “能量块”:编织未来无限可能
从纳米到穿戴:低维结构编织3D集成柔性电子新图景
视频号:#柔性电子那些事


参与评论

全部评论(0条)

相关产品推荐(★较多用户关注☆)
你可能还想看
  • 技术
  • 资讯
  • 百科
  • 应用
  • 轴振动传感器的功能
    随着技术的进步,振动监测已成为预测性维护的一项关键技术,可以帮助企业有效避免设备故障,降低维修成本,并提高生产效率。本文将深入探讨轴振动传感器的基本功能、工作原理以及它在各行业中的应用,旨在帮助读者全面理解这一技术的价值与重要性。
    2025-10-2380阅读 振动传感器
  • 单轴压缩试验机结构
    本文将详细解析单轴压缩试验机的结构组成及其工作原理,帮助读者深入了解该设备如何在测试过程中提供准确的实验数据,并且如何确保实验的可靠性与精度。对于从事相关测试领域的工程师与技术人员,掌握这些内容将对选择和使用单轴压缩试验机有着重要的实际意义。
    2025-10-22160阅读 压缩试验机
  • 多功能微生物培养系统
    作为一项集成化、高效、可扩展的科研工具,微生物培养系统不仅为实验室中的微生物培养提供了极大的便利,而且在药品生产、环境监测、食品发酵等多个领域中具有广泛的应用。随着科技的不断进步,传统的培养技术逐渐无法满足日益复杂的研究和生产需求,因此多功能微生物培养系统的出现,不仅解决了这一问题,还推动了相关行业的发展。
    2025-10-2289阅读 微生物培养系统
  • 悬浮培养生物反应器构造
    通过精确的设计和优化,悬浮培养反应器能够为细胞提供均匀的营养供应、稳定的环境条件,并促进高效的代谢过程。本文将深入探讨悬浮培养生物反应器的构造原理、设计要求及其在实际应用中的挑战与前景。我们将通过对不同类型反应器的分析,详细了解其在生物过程中的作用,并探讨如何提高其性能,以满足现代生物技术日益增长的需求。
    2025-10-2078阅读 生物反应器
  • 生物反应器的优点和应用
    利用自然存在的微生物或具有特殊降解能力的微生物接种至液相或固相的反应系统,即是生物反应器。到目前为止,“升降机型反应器”和“土壤泥浆反应器”为反应器中研究得zui多的两种。
    2025-10-191880阅读
  • 查看更多
版权与免责声明

①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。

②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。

③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi

关于作者

幂方科技专注于印刷与柔性电子方向,实现了柔性电子电路、柔性能源器件、柔性屏幕、柔性传感器、柔性生物电子、人工肌肉等柔性电子器件和系统的印刷制备,积极探索柔性电子技术在健康医疗、智能包装、工业互联网、柔性可穿戴、电子皮肤等领域的应用。

更多>>ta的最新文章
北航潘曹峰团队,Science Advances:通过界面协调实现的无滞后且动态弹性应变传感器
基于人体骨骼肌生物力学设计用于可穿戴应用的线性气动人工肌肉:综述
复旦大学彭慧胜/陈培宁教授团队智能纤维最新Nature!
关注 私信
热点文章
洁净室“密室逃脱”:不用进房间,如何知道里面有多干净?
北纳生物蜡样芽孢杆菌呕吐毒素标准物质,助力食品安全检测
通过粒径与真密度检测评价空心玻璃微珠抗压强度
守护电镀品质,日立ZA4000系列元素检测又快又准
从基因到表型:高内涵筛选如何解锁药物发现新维度?
珀金埃尔默ICP-OES有机进样测定原油中多元素含量的方法研究与探讨
告别繁琐!安东帕Autosorb 6300 实现催化剂“一站式”原位精准表征新突破!
行业应用 | 生物污垢治理破局:安东帕提出附着力与 Zeta 电位协同表征新方案
别等罚款找上门!企业 VOCs 治理,选对检测仪少走百万弯路
应用故事 | DSC: 50um 激光预扎孔坩埚盖的应用
近期话题
相关产品

在线留言

上传文档或图片,大小不超过10M
换一张?
取消