激光干涉仪是如何测量位移的?
激光干涉仪是如何测量位移的?
激光干涉仪是一种广泛应用于科学研究、工业制造和精密测量领域的仪器。在科学研究领域,激光干涉仪广泛应用于物理学、化学和生物学等多个学科,为研究人员提供了强大的工具。在工业制造中,激光干涉仪在精密加工、质量控制和自动化生产中发挥着关键作用。激光干涉仪的基本原理是利用激光的干涉效应进行测量和分析。在国际上,有多种常用的激光干涉仪技术,如迈克尔逊干涉仪、法布里-珀罗干涉仪和雅各比干涉仪等。它们在不同领域展现出卓越的性能和应用潜力。
法布里-珀罗干涉仪是一种常用的干涉仪,其为基于光学谐振腔原理的干涉仪器。核心是由两平行的反射镜构成的腔体,其中的激光通过多次反射形成谐振,从而形成干涉条纹。该技术在光谱分析、精密测量和光学传感等领域得到广泛应用。
图1 法布里-珀罗干涉仪原理图
图2 干涉条纹
从图1中我们可以看到,面光源置于透镜L1焦平面处,使得不同方向的光束平行射入干涉仪,在P1,P2相向的表面镀有高反膜,因此光束可以在P1,P2平面镜中作来回多次的反射,透射的平行光在通过透镜L2汇聚在其焦平面上形成如图2所示的同心原型的干涉条纹。
法布里-珀罗干涉仪的原理为多光束干涉原理。
图3 多光束干涉原理示意图
由图3我们可以看出,一束振幅为A0的光束以入射角θ0入射,经过多次反射与投射,透射出相互平行的光束。设高反膜的反射率为,因此可得第1束透射光的振幅为
,后续依次为
由等倾干涉可得,相邻的透射光束的光程差为:
由此引起的相位差为:
若第1束透射光的初相位为零,因此各光束的相位依次为
透射光的振动可以用复数进行表示:
我们计算其和振动,其中利用了等比求和公式:
其中
因此可得:
求合振动强度时,针对分式项需要用到他与共轭复数的乘积:
因此合振幅的平方为:
其中 称为艾里函数,
称为精细度,体现出干涉条纹的精细程度。
当P为固定值时,A2与相关。当
时为zui大,
时为zui小。因此越大时,可P见度越显著。
图4 不同精细度的艾里函数图
目前,激光干涉仪技术正处于不断创新和发展的阶段。随着激光技术、光学器件和信号处理技术的不断进步,激光干涉仪在精密测量、光学成像和光学通信等领域展现出更高的性能和应用潜力。激光干涉仪为了提高测量位移的精确度与稳定性,涉及到激光光源的选择与频率稳定、测距原理、相位解调、空气折射率补偿等多方面方法和技术的综合应用,国内外的研究现状根据测距的基本原理可分为飞行时间法和干涉法两大类。飞行时间法主要根据根据时间间隔的测量原理,通过直接或间接的方法测量发射脉冲与接受脉冲的时间间隔,进而计算目标距离。
干涉法量主要包括多波长干涉法、色散干涉法、双光梳干涉法与频率扫描干涉法。
多波长干涉法测量距离的原理基于不同波长光在光程差发生变化时引起的干涉现象。这个方法利用了不同波长光的相位变化关系,通过观察干涉条纹的移动来确定测量目标的距离。这种方法在测距应用中具有高精度和灵敏度,尤其在需要非接触和高精度的测量场景下。通过利用不同波长光的特性,多波长干涉法可以实现对目标距离的精确测量。
双光梳干涉法是一种使用两个频率非常稳定的光梳来实现高精度测距的方法。这种方法通过比较两个光梳之间的频率差异,从而测量目标的距离。通过观察和分析这些干涉条纹的模式,可以确定两个光梳之间的频率差异。由于频率差与目标距离有直接关系,因此可以通过测量频率差来计算目标的距离。
本文将主要介绍频率扫描干涉法。频率扫描干涉法(FSI)也称波长扫描干涉法,是通过激光在已知波长范围内连续扫描,并在扫描过程中对干涉条纹进行无模糊计数实现绝dui距离测量的,是真正的绝dui、单步的距离测量方法。
图5 频率扫描干涉示意图
频率扫描干涉法利用频率扫描激光分束后,测量两个干涉仪的光程差的比值。如果两个干涉仪中的一个的光程差是已知的,则可以确定第二干涉仪的光程差。具有已知光程差的干涉仪则被称为参考干涉仪,并且具有假设在长时间内恒定的光程差。光程差未知的干涉仪被称为测量干涉仪,并且假设其光程差也被假设为在扫描期间恒定。
斐索干涉仪具有零长度参考臂,因此光程差是干涉仪光学长度的两倍(图3中标记为LR和Lm)。接下来的讨论均关于的光学长度而不是光程差。激光器将其频率从起始频率(νt0)扫描到结束频率(νtn),并记录两个干涉仪输出强度。干涉仪的输出强度随激光频率和参考干涉仪产生的正弦函数的绝dui相位呈正弦变化,由下式给出:
其中Φabs, ti, R是参考干涉仪在时间ti的绝dui相位,LR是参考干涉计的长度,νti是激光在时间ti时的频率,c是光速。通过扫描开始与扫描结束的时间,计算出相对相位:
其中Φ ti, R是在时间ti时参考干涉仪提取的相位,而νt0是扫描开始时的频率。测量干涉仪的提取相位同样由下式给出:
其中Φ ti, M是在时间ti时测量干涉仪提取的相位,LM是测量干涉仪的长度。上二式中的提取相位的比率等于长度的比率:
因此,如果测量干涉仪和参考干涉仪的长度在扫描期间是恒定的,并且参考干涉仪长度是已知的,则可以确定测量干涉仪长度。而当测量干涉仪在空气中工作时,需要根据空气折射率的影响对测量长度进行校正真实的光学长度。
昊量光电代理的德国Qutools公司出品的皮米级激光干涉仪,就基于频率扫描干涉原理进行相对位移测量。通过快速波长扫描,波长扫描速度远大于被测物位移速度,并添加了饱和气室,通过气体吸收线精细控制波长,精度可达<50 pm,分辨率1 pm,可同时进行三通道测量,并具有20—5000mm的工作距离。
图6 quDIS激光干涉仪实物图
图7 quDIS激光干涉仪原理示意图
此外,根据您的需求,我们还提供了不同型号的传感头,可以应用于不同需求的测试。quDIS为常规情况下的使用提供标准传感器和定焦传感器,同时根据具体的需要以及恶劣环境下的应用,也设计了响应的特殊传感头。
图8 部分传感器型号与参数
另外,针对在空气环境下测量时,环境中温度、湿度、压强的影响都会导致空气折射率产生变化,zui终影响到相对位移的测量。我们还提供了环境测量补偿模块,可以实时进行环境的温度、湿度、压强的测量,并实时计算出环境的空气折射率,用于补偿相对位移测量。
图9 环境补偿模块参数
综上,我们以FP干涉仪出发,介绍了现今干涉仪的基本原理,并介绍了我们的quDIS激光干涉仪,若对产品有兴趣,请联系我们。
如果您对激光干涉仪有兴趣,请访问上海昊量光电的官方网页:
https://www.auniontech.com/three-level-55.html
相关文献:
[1] Dale J, Hughes B, Lancaster AJ, Lewis AJ, Reichold AJ, Warden MS. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells.[J] Opt Express. 2014 OCT 6;22(20):24869-93.
[2] 张世华.基于飞秒光频梳的正弦相位调制干涉绝dui距离测量方法研究[D].浙江理工大学, 2018.
[3] 姚启钧.光学教程[M].北京: 高等教育出版社, 1981
更多详情请联系昊量光电/欢迎直接联系昊量光电
关于昊量光电:
上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。
相关产品
全部评论(0条)
推荐阅读
-
- 一种以激光干涉仪为计量基准的DIC位移精度验证实验
- 千眼狼光学测量工程师团队在光学影像测量实验室,开展以激光干涉仪为精度计量基准,探究环境干扰、散斑密度、散斑类型对测量精度影响的科学实验。
-
- 实用技巧:如何根据激光干涉仪间距定义标准进行校准
- 它广泛应用于材料检测、光学测量、医学成像等领域。本文将详细解析光纤白光干涉仪的核心组成部分及其工作原理,帮助读者深入理解该技术在现代科学研究和工业中的重要应用。通过对光纤、白光源、干涉仪结构等方面的分析,本文将为您提供全面的知识背景,并探讨其在各行业中的应用价值。
-
- 解密光学工具:白光干涉仪与激光干涉仪对比分析
- 为了确保其在实际应用中的准确性与可靠性,制定科学严谨的检定规程标准至关重要。本文旨在系统地介绍白光干涉仪的检定规程标准,解析如何通过标准化的检定流程,确保仪器性能达到要求,并提供相应的操作指南和技术要求,以提升仪器的使用价值和应用效果。
-
- 激光位移监测仪—紧急救援场景设计的建筑物位移安全监测设备
- 应急救援位移监测仪是一种专为紧急救援场景设计的安全监测设备,核心原理在于通过各种传感器将位移信号转换为可测量、可处理的电信号或数字信号。根据监测方式的不同,位移监测仪可分为多种类型,而应急救援位移
-
- D7点衍射激光干涉仪用于测量介观显微物镜的检测方案
- 昊量光电推出一种测量介观显微物镜的检测方案,它使用D7点衍射激光干涉仪检测,这种方案具备以下优点:1.无需参考镜;2.可在全光谱范围VIS + NIR下进行;3.可选择不同的工作波长范围等
-
- 应变计的测量范围和精度是如何界定?
- 振弦式应变计作为一种高精度、高灵敏度的应变测量设备,在结构监测、材料测试、土木工程等领域具有广泛的应用。
-
- 激光位移监测仪—文物保护对古建筑、文物等进行位移监测,保护文化遗产的安全
- 激光位移监测仪广泛应用于对位移或形变敏感的场景,涵盖地质灾害防治、基础设施安全、工业制造、文物保护等多个领域:地质灾害防治在高陡边坡、切坡建房区、矿山开采区等易失稳区域,监测岩土体表面微小位移和滑
-
- 激光干涉仪校准全攻略:角度校正技巧一网打尽
- 从科研实验到工业应用,其独特的高精度测量能力让它在诸多领域中脱颖而出。本文将详细探讨便携激光干涉仪的作用、应用领域以及其在现代科技中的重要地位,进一步展示其在精密测量、工程检测等方面的巨大潜力。
-
- Sensofar共聚焦白光干涉仪测量原理
- 虽然一开始作为高性能 3D 光学轮廓仪设计,但是我们的某些系统胜过所有现有的光学轮廓仪,集所有技术于一身。
-
- 白光干涉仪用于对与激光诱导击穿光谱 (LIBS) 测量相关的烧蚀坑进行表征
- 3D 光学轮廓仪 S neox 已被证明是一种精确、快速且易于使用的工具,可用于研究与激光诱导击穿光谱法测量相关的烧蚀坑。
-
- 探究平面激光干涉仪原理:深度解析工作机制
- 通过利用激光光源的干涉原理,它能够实现对微小物体位移、形变、表面质量等物理量的高精度测量。本篇文章将深入探讨平面激光干涉仪的工作原理、构造以及应用特点,帮助读者更好地理解该技术的核心原理及其在实际工程中的应用。
-
- 揭秘平面激光干涉仪:构成与应用全方位解析
- 本文将详细探讨平面激光干涉仪的构成部分、工作原理以及其在不同应用中的重要性。通过对其构造的深入分析,旨在帮助读者全面理解激光干涉技术如何实现高精度测量,及其在现代科学技术中的广泛应用。
-
- 白光干涉仪表面轮廓仪:精密测量与应用解析
- 白光干涉仪表面轮廓仪是一种利用白光干涉技术对物体表面进行高精度轮廓测量的仪器。随着工业和科研领域对表面形貌精度要求的不断提升,白光干涉仪表面轮廓仪以其非接触式、高分辨率和快速测量的优点,成为精密测量领
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论