Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应
魏琳琳博士
摘要
以聚合物为基体,无机纳米粒子为填料的聚合物纳米复合材料具有优异的力学、电学和热学性能。纳米颗粒和聚合物之间的界面效应通常被认为是实现这些性能增强的关键因素。然而,如何理解界面效应以及界面微区的结构与性能是聚合物纳米复合材料领域长期面临的基础性难题。
近期,来自武汉理工大学、清华大学、伍伦贡大学等学校的科学家们将Bruker的光热诱导纳米红外技术与其他先进技术相结合,直接探索纳米颗粒-聚合物纳米级界面区域。研究发现无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构,包括10纳米厚的内层和大于100纳米的外层界面。分子动力学及相场模拟结果表明纳米颗粒表面电势以及颗粒间距的协同作用是形成界面极性构型的关键作用机制。这项研究的结果有助于阐明界面处的相互作用机制,并为制备纳米复合材料以获得Z佳性能提供有价值的见解。
利用无机纳米粒子/聚合物复合材料的高极性“双界面层”行为,科学家们在具有超低无机填料含量的纳米复合材料中获得了显著增强的介电及压电性能。相关研究成果以Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites为题,发表在Nature Communications上。
实验内容
实验选择典型的铁电聚合物PVDF作为基体,填充TiO2纳米颗粒。其中PVDF膜层的厚度低于纳米颗粒的直径,使TiO2能够暴露在膜层表面(图1 a)。图1b,c 样品表面和横截面的SEM图像显示颗粒表面存在约10nm的包裹层。HADDF和碳成像图(图1d,f)进一步表明10nm的结合层富含碳元素,为有机碳链键合在纳米颗粒表面。采用布鲁克nanoIR3纳米红外系统进一步研究了界面区域的化学结构(图1 e f)。采用PVDF极性构象的波数(866cm-1)和非极性构象的吸收波数(766cm-1)进行红外成像,分别对应图1f中图和右图。红外成像图显示纳米颗粒周围存在100nm以上强极性构象区域。压电力显微镜(PFM)采集平行于膜平面和垂直于膜平面的L-PFM图像及面外V-PFM图像,结果显示颗粒的L-PFM呈现一半亮一半暗的结构,V-PFM呈现全亮的结构。表明纳米颗粒/聚合物的内层界面区域内偶极子的极化方向垂直于纳米颗粒表面。综合以上的观测结果,作者揭示了无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构, 由10nm的极性偶极子内层界面的和100nm强极性构象的外层界面组成。
作者采用nanoIR3纳米红外系统进一步研究了纳米颗粒的间距对界面效应的影响(图2)。距离较远的纳米颗粒会形成强极性构象结构界面(图2 b左图);距离相对较近的纳米颗粒,其界面区域相互重叠,将抑制极性构象的形成(图2 b中图);纳米颗粒相互连接时,界面区域也倾向于相互合并(图2 b右图)。FTIR检测不同TiO2纳米颗粒含量的宏观材料中极性构象的比例(840 cm?1/766 cm?1及 1279 cm?1/766 cm?1峰强比),TiO2纳米颗粒含量0.35%时极性构象Z多,继续增加纳米颗粒含量,由于纳米颗粒间距变小,界面区域相互重叠使极性构象含量降低。分子动力学及相场模拟表明极性构象界面的形成取决于纳米颗粒表面电势以及颗粒间距的协同作用。
采用纳米叠层设计(Al2O3/PVDF/ Al2O3)表征单一界面层的贡献。纳米叠层纳米复合材料的介电常数εr与PVDF的膜厚具有很大的相关性,并随着PVDF膜厚的减小而增加。由于界面极性层的影响,纳米叠层纳米复合材料显示出比Al2O3(εr~9.8)和PVDF(εr~7.8)更高的εr。而Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm),包含两层内层界面层结构,表现出86 J/cm3的超高介电能量密度,远高于文献报道的纳米复合材料的介电能量密度。同时具有76%的能量效率,与大多数介电聚合物或纳米复合材料相当。
采用纳米叠层设计(Al2O3/PVDF/ Al2O3)表征单一界面层的贡献。纳米叠层纳米复合材料的介电常数εr与PVDF的膜厚具有很大的相关性,并随着PVDF膜厚的减小而增加。由于界面极性层的影响,纳米叠层纳米复合材料显示出比Al2O3(εr~9.8)和PVDF(εr~7.8)更高的εr。而Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm),包含两层内层界面层结构,表现出86 J/cm3的超高介电能量密度,远高于文献报道的纳米复合材料的介电能量密度。同时具有76%的能量效率,与大多数介电聚合物或纳米复合材料相当。
原文链接:
https://www.nature.com/articles/s41467-023-41479-0
扫码关注
部
服务热线
400-890-5666
BNS.China@bruker.com
全部评论(0条)
推荐阅读
-
- Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应
- 近期,来自武汉理工大学、清华大学、伍伦贡大学等学校的科学家们将Bruker的光热诱导纳米红外技术与其他先进技术相结合,直接探索纳米颗粒-聚合物纳米级界面区域。
-
- Nature Catal.丨10 nm 红外助力纳米尺度原位研究!
- Nature Catal.丨10 nm 红外助力纳米尺度原位研究!
-
- 周莹《Nature Communications》超疏水表面上空心液滴回弹的抑制研究
- 该篇文章报道了一种有趣的液滴弹跳现象,通过在液滴中加入气泡来抑制液滴撞击表面后的反弹,即使在超疏液表面也能实现明显的弹跳抑制。文章通过深入的实验探究,数学建模及数值模拟,从能量、流场、力学三个角度揭示了空心液滴的弹跳抑制原理与传统的能量……
-
- 用户速递 | Nature Communications: 双异质核壳纳米晶显著提高X射线延时3D成像
- 中国计量大学光电学院徐时清教授团队在低剂量柔性X射线成像技术领域取得重要进展
-
- 纳米颗粒驱动纳米粒度检测技术革新
- 纳米技术被认为是可能改变现代世界的下一次技术革命。也许迄今为止所看到的发展还没有达到这一水平,但政府、大学和工业界的综合投资是巨大的,全球政府投资每年超过90亿美元,而且这一数字还在不断持续的增长。
-
- 纳米颗粒驱动纳米粒度检测技术革新
- 纳米技术被认为是可能改变现代世界的下一次技术革命。也许迄今为止所看到的发展还没有达到这一水平,但政府、大学和工业界的综合投资是巨大的,全球政府投资每年超过90亿美元,而且这一数字还在不断持续的增长。
-
- 纳米颗粒驱动纳米粒度检测技术革新
- 纳米技术被认为是可能改变现代世界的下一次技术革命。也许迄今为止所看到的发展还没有达到这一水平,但政府、大学和工业界的综合投资是巨大的,全球政府投资每年超过90亿美元,而且这一数字还在不断持续的增长。
-
- 《文章投稿》固-固相变复合材料的制备及其太阳能界面水蒸发性能研究
- 太阳能驱动的界面蒸发材料在海水淡化方面应用广泛。但太阳能有间歇性,为了解决这一问题,研究者将相变材料和界面蒸发材料结合。
-
- 聚合物纳米颗粒和脂质体纳米颗粒(纳米药物递送载体,低通量人字形混合器和高通量微混合器芯片,20-500nm粒径,PDI≤0.2)
- 微流体器件可定制NP特性如尺寸,形态和尺寸分布,同时确保可重复性。微流体可用于生产固体脂质纳米颗粒,聚合物基NPs和脂-聚合物混合NPs以及各种无机NPs,如二氧化硅,金属,金属氧化物,量子点和碳基NPs,提供对组成和表面性质的精确控制。
-
- Nature Communications: 由金和铜独立准BCC纳米晶格制成的具有超高能量吸收能力的机械超材料
- 超材料是一种经过设计的复合材料,由周期性或非周期性排列的结构单元组成,展现出超越传统块体材料的性能和独特功能。其中,能量吸收型机械超材料引起了极大的关注,因为高效吸收机械能对于许多应用来说至关重要。
-
- Science:小行星(162173)“龙宫”样本中大分子有机物的纳米红外研究
- “龙宫”颗粒样品中含有大量以亚微米级有机颗粒形态和分散在基质中的有机物。“龙宫”有机物由芳香碳、脂肪碳、酮和羧基组成。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论