2025-01-21 09:35:37境空气中非甲烷总烃
境空气中非甲烷总烃(NMHC)通常是指在特定条件下,从总烃测定结果中扣除甲烷后所得到的值,它包含了除甲烷以外的所有可挥发的碳氢化合物。这些化合物主要来源于化石燃料的燃烧、工业排放、汽车尾气以及自然过程等。非甲烷总烃在大气中的存在会对环境和人体健康产生一定影响,因此其监测和控制对于环境保护和空气质量管理具有重要意义。在监测过程中,会使用专业的仪器来准确测量非甲烷总烃的浓度,以确保数据的准确性和可靠性。

资源:20001个    浏览:100展开

境空气中非甲烷总烃相关内容

产品名称

所在地

价格

供应商

咨询

环境空气非甲烷总烃气相色谱仪
面议
山东莱恩德智能科技有限公司

售全国

我要询价 联系方式
云境天合 空气监测站 TH-CQX5
国内 山东
¥16800
山东天合环境科技有限公司

售全国

我要询价 联系方式
云境天合 烟雾环境空气能见度仪 TH-BN6
国内 山东
¥38000
山东天合环境科技有限公司

售全国

我要询价 联系方式
食品二氧化碳和空气中总烃、非甲烷总烃检测
国内 北京
面议
北京华盛谱信仪器有限责任公司

售全国

我要询价 联系方式
空气中的乙烯
国外 美洲
¥3368
默克化工技术(上海)有限公司

售全国

我要询价 联系方式
2023-05-11 15:37:19赛默飞空气中非甲烷总烃及苯系物整体解决方案
 随着国家“双碳”战略的持续推进,环境监测部门对于环境空气和固定污染源的非甲烷总烃及苯系物的检测需求越来越多。同时相关标准也在不断更新之中,其中HJ 1261-2022《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》也已于2023年1月开始实施。空气中总烃、甲烷、非甲烷总烃测定目前采用HJ 38-2017 《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》和HJ 604-2017《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》两个方法实施。赛默飞最xin的Trace1600系列色谱仪采用独特的模块化即时连接进样口、检测器,以其优越的灵活性和稳定性,将苯系物测定和非甲烷总烃检测整合到一台气相色谱仪上,极大地节约实验室运行成本、提高检测效率。配置如下图:                                                                          (点击查看大图)  一总烃、甲烷和非甲烷总烃测定针对非甲烷总烃检测(NMHC),采用十通阀双定量环,平行双色谱柱汇合到单FID检测器方案,经济实用。配置变色龙软件,提供灵活的报告模板,可以通过编辑公式计算得到非甲烷总烃的质量浓度(以甲烷或以碳计,mg/m3)。zuida程 度的简化工作,方便用户日常分析操作。根据环境保护标准《HJ 604-2017环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》要求,由低浓度到高浓度依次通过定量环取1 mL气体样品注入气相色谱仪,分别测定总烃、甲烷。色谱条件:进样量:1mL阀箱温度:80℃柱温箱:起始温度60℃,保持11.5,速率:10℃/min,终温:120,保持2min。色谱柱1:Porapak Q 1/8”×2m色谱柱2:Glass Bead  1/8”×1m检测器温度:250℃                                                                           1高浓度NMHC色谱图及标线高浓度NMHC的5个浓度点依次为50, 100, 200, 400, 800 μmol/mol。                                                   高浓度非甲烷总烃标气色谱图如图1:                                          图1:高浓度总烃及甲烷5个浓度点叠加谱图                                                高浓度总烃校准曲线,线性相关系数R^2=0.9999                                                高浓度甲烷校准曲线,线性相关系数R^2=0.9999                                                                                  2低浓度NMHC色谱图及标线低浓度NMHC的5个浓度点依次为1, 2, 4, 8, 16 μmol/mol。                                                      低浓度非甲烷总烃标气色谱图如图2:                                                图2:低浓度总烃及甲烷5个浓度点叠加谱图                                                      低浓度总烃校准曲线,线性相关系数R^2=0.9999                                                      低浓度甲烷校准曲线,线性相关系数R^2=0.9999    从实验结果可以得出结论,单检测器非甲烷总烃检测方案具有良好的灵敏度和线性,适用浓度范围广,完全可以满足固定污染源和环境空气非甲烷总烃检测需求。 二空气中苯系物测定根据HJ 1261-2022《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》,需要检测的苯系物包括:苯、甲苯、乙苯、对二甲苯、间二甲苯、异丙苯、邻二甲苯、苯乙烯八种物质。方法检出限为0.2 mg/m3~0.6 mg/m3,测定下限为0.8 mg/m3~2.4 mg/m3。采用气袋直接进样即可满足检出限要求。配置用六通进样阀接分流/不分流进样口,接TG-WAX色谱柱,FID检出,可以通过变色龙软件的定制化报告转换为mg/m3。色谱条件:进样量:1mL进样口温度:200℃分流比:2:1色谱柱:TG-WAXMS GC Column 30m x 0.32mm x 1μm柱流速:3mL/minFID检测器温度:240℃                                                15 µmol/mol苯系物标准气体谱图如图3:                                     图3:15 µmol/mol苯系物标准气体谱图                         1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-间二甲苯;6-异丙苯;7-邻二甲苯;8-苯乙烯    连续6次进样各组分相对标准偏差RSD在0.97%-2.09%之间。通过信噪比计算,苯的三倍噪音检出限为0.18 mg/m3。实验结果表明本方案可以满足固定污染源废气中苯系物的测定需求。 总  结赛默飞Trace1600系列气相色谱仪以其出色的灵活性和稳定性,可以在一台GC上同时搭载多个应用方法,并可以随时更换不同类型进样口、检测器,满足实验室多任务分析需求,为用户提高效率、节约成本,提供切实可行的方案。
249人看过
2025-02-11 12:30:15牛奶分析仪怎么排空气
牛奶分析仪怎么排空气:确保测量与稳定性能 在牛奶质量检测过程中,牛奶分析仪是不可或缺的工具。在设备使用过程中,如何排除仪器内的空气,确保测量的性与设备的稳定性,成为了技术人员必须掌握的关键操作。本文将详细解析牛奶分析仪的排空气方法,并探讨其对分析仪性能的重要影响。通过了解这一过程,您将能更有效地使用牛奶分析仪,确保每次测量结果的准确无误。 我们需要明确牛奶分析仪在使用过程中为何需要排空气。分析仪的工作原理通常依赖于液体流量、温度以及密度等参数的精确测量,而空气的存在会干扰这些数据的准确性。空气泡可能导致液体流动不均,影响测量探头的工作,进而使终结果偏差。因此,定期排除空气,不仅能避免测量误差,还能延长设备使用寿命。 我们讨论具体的排空气方法。在大多数牛奶分析仪中,排空气的步骤可以通过手动操作或自动程序来完成。对于手动操作,首先应关闭设备并确保仪器处于安全状态。然后,打开仪器的排气阀或泄气阀,缓慢排出系统内的空气。使用者可以通过观察仪器界面上的气泡检测功能,确保气泡完全排出。如果是自动排气系统,操作则相对简单,只需按照设备的使用说明,选择对应的排空气选项,仪器会自动完成排气过程。 除了基本的排气操作,定期检查和维护仪器的密封性也是非常重要的。如果设备出现密封不良或漏气的情况,空气可能会不断进入系统,导致反复出现排空气的问题。因此,维护仪器的密封性,及时更换老化部件,能有效减少空气进入,从根本上解决排气困难。 在操作过程中,应特别注意液体和空气的接触点,避免外界因素影响到排气效果。对气泡的检查非常重要,通常需要在排气完成后,进行数次观察,确保液体管道内没有残留的空气。对于一些高级型号的牛奶分析仪,还配备了智能检测功能,能够实时监测空气泡的存在,并自动提示用户进行排气。 牛奶分析仪的排空气操作对于确保测量结果的精确度至关重要。通过合理的操作步骤和定期的设备检查,能够有效防止空气对分析结果的干扰,确保每一次的检测都能提供可靠的数据。在实际操作中,技术人员应根据设备的类型和使用环境,灵活调整排气策略,以提高仪器的稳定性与长期运行的可靠性。
145人看过
2025-04-30 13:15:19平板硫化机怎么排空气
平板硫化机怎么排空气:确保硫化质量的关键步骤 在平板硫化机的使用过程中,空气排除是确保硫化质量和效率的关键步骤。排空气的过程对于提高硫化效果、降低气泡及其他缺陷的出现具有至关重要的作用。本文将深入探讨平板硫化机排空气的具体方法、操作技巧及其在实际生产中的重要性,帮助相关人员更好地理解如何通过有效的空气排除技术,优化硫化效果,确保产品质量。 1. 平板硫化机排空气的重要性 在平板硫化过程中,原材料的加热与压缩会引发空气或气体的形成,尤其是在高温高压条件下。若未能及时有效地排除这些气体,可能会导致产品表面出现气泡、缺陷或其他质量问题。尤其对于橡胶、塑料等高要求的硫化工艺来说,气体未能有效排出不仅影响外观质量,还可能降低材料的耐久性和性能。因此,排空气不仅是一个工艺步骤,更是确保产品合格的基础。 2. 平板硫化机排空气的方法 排空气的方法有很多,具体采用何种方法通常取决于硫化机的设计与使用环境。以下是常见的几种排空气方式: 2.1. 利用真空排气 在硫化机的操作过程中,先通过真空泵将工作室内的空气抽走,利用负压状态排除物料中的空气。真空排气方法能够有效地防止气泡的形成,确保物料在硫化过程中均匀受热,从而提高硫化质量。真空泵的选择与调节要根据硫化机的规模和物料特性来确定。 2.2. 借助自动排气系统 现代平板硫化机多配备有自动排气系统,该系统通过压力传感器监测硫化室内的气体变化,并根据实时数据自动调整排气量。自动排气系统可以在整个硫化过程中保持合适的排气状态,避免因人为操作不当而导致空气排除不彻底,提升生产效率。 2.3. 倾斜式排气设计 有些平板硫化机设计上采用了倾斜式硫化室结构,利用重力和加压作用帮助排除物料中的空气。该设计能够有效减少操作过程中的气体滞留,提高排气效率,避免空气滞留引发的质量问题。 2.4. 人工辅助排气 对于一些特殊情况或设备故障,人工辅助排气也能起到一定的作用。通过手动调节排气阀门、利用气压表等工具,操作者可以根据实际情况调整排气强度,以确保设备处于佳工作状态。 3. 排气过程中的常见问题及解决方案 在排空气的过程中,可能会遇到一些常见问题,比如气泡无法完全去除或排气不畅。以下是一些常见问题的原因及解决方案: 3.1. 排气不畅 如果排气不畅,可能是由于排气阀门损坏或排气管道堵塞所致。此时需要检查排气系统的各个环节,确保阀门开启正常、管道无阻塞,必要时进行清理或更换。 3.2. 物料气泡未完全去除 如果硫化过程中仍然出现气泡,可能是物料未充分加热或加热时间不足。此时需要调整加热温度或延长加热时间,确保物料在硫化过程中能够均匀加热,从而彻底排除空气。 3.3. 排气时间不当 排气时间过短可能导致空气未能完全排出,过长则可能影响生产效率。合理的排气时间应根据物料特性、硫化机的配置以及生产需求来设定。 4. 结论 平板硫化机的排空气操作在硫化过程中扮演着至关重要的角色。有效的排气不仅能提高硫化质量,还能显著提升生产效率,降低故障率。通过采取合适的排气方法、定期维护排气系统并优化操作流程,企业能够确保生产出高质量的硫化产品。因此,掌握科学的排气技术是每一位生产人员的必备技能,也是提高整体生产水平的关键。
151人看过
2025-11-26 17:00:23空气微生物采样器是什么
空气微生物采样器是一种专门用于检测空气中微生物浓度和成分的专业设备,在室内环境监测、公共卫生、环境保护以及工业生产等领域具有重要应用。随着对空气质量关注度的不断提高,空气微生物采样器的作用愈加凸显。本文将全面介绍空气微生物采样器的定义、工作原理、主要类型、应用场景以及未来发展趋势,帮助读者深入理解这一设备在空气质量保障中的关键角色。 空气微生物采样器的定义和重要性 空气微生物采样器是一种用于捕获和分析空气中微生物(如细菌、真菌、病毒等)数量和种类的仪器。它能够模拟空气中的微生物分布情况,为环境评价和健康风险评估提供基础数据。空气中的微生物浓度高低与人类健康密切相关,尤其是在医院、食品加工厂、通风系统以及公共场所等环境中,微生物的监测尤为重要。通过定期采样和分析,可以提前发现潜在的空气污染隐患,有效预防由微生物引发的疾病传播。 工作原理与主要类型 空气微生物采样器主要通过吸气、沉降或过滤等方式捕获空气中的微生物。其中,振荡式采样器和沉降式采样器是常见的两种类型。 振荡式采样器:利用旋转或振动的装置,将空气中的微生物吸附到培养基或过滤膜上。这类设备具有高效采样能力,适合大气中微生物浓度较低或者需要高灵敏度检测的场所。 沉降式采样器:通过让空气中的微生物沉降在培养皿或采样片上,简便易用,适合快速检测或现场监测。这类采样器适合不需要复杂设备的环境,但其采样效率受空气流动速度与时间影响较大。 除了上述两种,现代科技还引入液体冲洗、流速控制等技术,以提高采样效率和检测准确性。近年来,自动化、便携化设备逐渐普及,使得空气微生物检测过程更为便捷。 应用场景分析 空气微生物采样器广泛应用于多个场合,保障公共卫生安全。 医疗机构:在医院环境中监测空气微生物水平,减少交叉感染的风险。尤其在手术室、重症监护室等区域,确保空气质量符合标准。 食品工业:检测生产车间、仓库等空气中微生物的存在,确保产品不受微生物污染,符合食品安全规范。 公共场所:如商场、学校、交通站点等,定期监测空气微生物浓度,为环境改善和公共健康提供科学依据。 室内环境管理:在办公室、家庭等场所中,检测空气质量,判断空气净化设备效果或需改进的空间。 环境保护与研究:对自然环境中的微生物多样性进行研究,支持生态保护和环境改善策略制定。 未来发展趋势 随着科技不断进步,空气微生物采样器的未来发展将呈现智能化、多功能化和微型化的趋势。 智能化:集成传感器和数据分析平台,实现实时监测和远程管理,提高响应速度和监控精度。 多功能化:结合空气污染物、VOC等多种有害物质检测,实现空气质量的综合评估。 微型化:设备变得更加轻便便携,适应现场快速检测和移动监测的需求。 自动化:自动采样、分析与报告,大幅提升工作效率,降低人为操作误差。 总结 空气微生物采样器作为环境监测的重要工具,凭借其、快速的检测能力,为公共卫生安全和环境保护提供了有力支撑。随着先进技术的融入,这一设备的应用范围将不断扩大,性能将持续提升,为人类健康和生态环境的守护发挥更大作用。对于从事环境监测、公共卫生管理和科学研究的专业人士而言,理解和掌握空气微生物采样器的原理与应用,将成为维护空气质量不可或缺的技术基础。
69人看过
2026-01-09 18:15:28空气微生物采样器是什么
空气微生物采样器是一种专门用于检测空气中微生物浓度和成分的专业设备,在室内环境监测、公共卫生、环境保护以及工业生产等领域具有重要应用。随着对空气质量关注度的不断提高,空气微生物采样器的作用愈加凸显。本文将全面介绍空气微生物采样器的定义、工作原理、主要类型、应用场景以及未来发展趋势,帮助读者深入理解这一设备在空气质量保障中的关键角色。 空气微生物采样器的定义和重要性 空气微生物采样器是一种用于捕获和分析空气中微生物(如细菌、真菌、病毒等)数量和种类的仪器。它能够模拟空气中的微生物分布情况,为环境评价和健康风险评估提供基础数据。空气中的微生物浓度高低与人类健康密切相关,尤其是在医院、食品加工厂、通风系统以及公共场所等环境中,微生物的监测尤为重要。通过定期采样和分析,可以提前发现潜在的空气污染隐患,有效预防由微生物引发的疾病传播。 工作原理与主要类型 空气微生物采样器主要通过吸气、沉降或过滤等方式捕获空气中的微生物。其中,振荡式采样器和沉降式采样器是常见的两种类型。 振荡式采样器:利用旋转或振动的装置,将空气中的微生物吸附到培养基或过滤膜上。这类设备具有高效采样能力,适合大气中微生物浓度较低或者需要高灵敏度检测的场所。 沉降式采样器:通过让空气中的微生物沉降在培养皿或采样片上,简便易用,适合快速检测或现场监测。这类采样器适合不需要复杂设备的环境,但其采样效率受空气流动速度与时间影响较大。 除了上述两种,现代科技还引入液体冲洗、流速控制等技术,以提高采样效率和检测准确性。近年来,自动化、便携化设备逐渐普及,使得空气微生物检测过程更为便捷。 应用场景分析 空气微生物采样器广泛应用于多个场合,保障公共卫生安全。 医疗机构:在医院环境中监测空气微生物水平,减少交叉感染的风险。尤其在手术室、重症监护室等区域,确保空气质量符合标准。 食品工业:检测生产车间、仓库等空气中微生物的存在,确保产品不受微生物污染,符合食品安全规范。 公共场所:如商场、学校、交通站点等,定期监测空气微生物浓度,为环境改善和公共健康提供科学依据。 室内环境管理:在办公室、家庭等场所中,检测空气质量,判断空气净化设备效果或需改进的空间。 环境保护与研究:对自然环境中的微生物多样性进行研究,支持生态保护和环境改善策略制定。 未来发展趋势 随着科技不断进步,空气微生物采样器的未来发展将呈现智能化、多功能化和微型化的趋势。 智能化:集成传感器和数据分析平台,实现实时监测和远程管理,提高响应速度和监控精度。 多功能化:结合空气污染物、VOC等多种有害物质检测,实现空气质量的综合评估。 微型化:设备变得更加轻便便携,适应现场快速检测和移动监测的需求。 自动化:自动采样、分析与报告,大幅提升工作效率,降低人为操作误差。 总结 空气微生物采样器作为环境监测的重要工具,凭借其、快速的检测能力,为公共卫生安全和环境保护提供了有力支撑。随着先进技术的融入,这一设备的应用范围将不断扩大,性能将持续提升,为人类健康和生态环境的守护发挥更大作用。对于从事环境监测、公共卫生管理和科学研究的专业人士而言,理解和掌握空气微生物采样器的原理与应用,将成为维护空气质量不可或缺的技术基础。
20人看过
应变控制型流变仪
高效液相色谱技术
代谢组学前沿技术
不锈钢传感器
傅立叶变换红外光谱
奥豪斯的EX系列天平
高分子聚合物
高分辨率冷冻电镜
联用仪器设备微塑料分析方案
数据拟合分析技巧
HPLC 知识有奖答题
通用水浴器
LC6000高效液相色谱法检测
原子光谱领域新技术
空间质谱成像
高通量多毛细管电泳
扫描电镜智能化
365EM系列高端水分测定仪
境空气中非甲烷总烃
DAD检测器
气相色谱质谱法
高低温老化箱
甲烷探测器
微波消解-石墨炉原子吸收光谱法
土壤有效硼的测定
显微成像微塑料分析
PHI XPS
常压馏程测定仪
蛋白组学靶点
一体化水环境智能监测
维生素D家族的临床意义
过程质谱仪
低电流测试断路器接触
动态光散射纳米粒度测量
原子力轮廓仪
输送带滚筒摩擦实验装置