徕卡175周年:入射光荧光显微镜的里程碑
荧光显微镜先驱
Johan Sebastiaan Ploem
自上世纪中叶以来,荧光显微镜发展成为一种生物科学工具,对我们了解生命产生了最大的影响。在荧光分子的帮助下观察细胞和蛋白质是当今几乎所有生命科学学科的标准方法。这种广泛的应用可以追溯到一些研究人员的技术工作,他们希望改进和简化荧光显微镜下的劳动。荷兰医生约翰-塞巴斯蒂安-普洛姆(Johann Sebastiaan Ploem)就是其中的一位参与者。
约翰-塞巴斯蒂安-普洛姆(Johann Sebastiaan Ploem)于 1927 年出生在苏门答腊岛的泽兰托(Sawahlunto),是一名荷兰煤矿工程师的儿子。幼年时,他随父母回到荷兰,并在那里将绘画作为自己的爱好之一。高中毕业后,他发现了另一个令人着迷的色彩领域,我们稍后会了解到。Ploem 决定学习医学,并在乌得勒支、哈佛和阿姆斯特丹接受教育。随后,他开始了学术生涯,曾在迈阿密大学和阿姆斯特丹大学工作,后晋升为荷兰莱顿大学医学系教授。
在研究活动中,他发现荧光显微镜是一种强大的工具。20 世纪 60 年代,一种特殊的标本照明方式开始流行,事实上,早在 1925 年,对丝虫自发荧光事件感兴趣的 Policard 和 Paillot 就已经知道并描述了这种照明方式(Policard 和 Paillot,1925 年)。一些研究人员重新启动了这两位法国科学家的项目,将荧光照明和样品检测放在显微镜的同一侧。这种利用入射光的原理被称为 "Epi-Illumination",与透射显微镜形成鲜明对比。在荧光显微镜中使用这种技术的一大好处是可以避免检测光源发出的发射光(图 1)。另一个优点是机械性更强:在透射照明中,聚光器和物镜有两个独立的光轴,必须仔细对准。而在外延照明中,物镜既是聚光器,又是集光物镜。这样就可以避免对准问题。
图 1:外延照明在荧光显微镜中的优势:在透射照明的情况下(左图),光源和图像检测位于物镜的两侧。在这种设置下,一个明显的限制就是无法检测到激发光(浅蓝色)。相比之下,Epi-Illumination(右图)使用物镜进行照明和图像检测。对于荧光显微镜来说,这意味着用户不会受到激发光的照射。
早在几年前,前苏联的两位研究人员就为荧光外延照明显微镜提供了非常重要的投入。Brumberg 和 Krylova 开发了一种所谓的二向色分光器,用于入射光的紫外激发(Brumberg 和 Krylova,1952 年)。
二向色材料能够让特定波长范围的光通过,而其他波长的光则被反射(图 2)。
这一原理对于荧光外延照明是不可或缺的,因为激发光必须以某种方式融合到显微镜的光路中(图 3)。更确切地说,二向色分光镜无法穿透光源发出的所需激发光的波长,只能将激发光反射到样品上。样品发出的荧光反过来又可以通过二向色分光器到达检测端。
图 2:透射图说明了二向色分光镜的功能。波长较短的光(蓝色箭头)会被反射,而波长较长的光(红色箭头)则可以通过滤光器。
图 3:荧光外延照明需要一个二向色镜(灰色),它能够将激发光(蓝色)反射到试样上,并将发射光(绿色)传递到检测端。激发光的波长可通过相应的滤光片(橙色)进行预选。朝向检测侧的滤光片(紫色)只允许荧光团的波长通过,并排除激发光的残余杂散光。
遗憾的是,由于铁幕之间缺乏信息交流,Ploem 并不知道俄罗斯的发展情况。尽管如此,他还是自己开始使用二向色分光镜。针对 Ploem 的特殊情况,他与著名的特种玻璃生产商肖特公司(美因茨)共同开发了一种可反射蓝光和绿光的分光镜(Ploem,1965 年)。之后,他用 Leitz 公司提供的中性分光镜改装了一台 "Opak" 外延照明器,通过引入一个带有四个不同二向色分光镜的滑块,他可以在紫外线、紫光、蓝光和绿光之间非常快速、方便地改变激发光的波长(Ploem,1967 年)(图 4)。
图 4:荧光多波长外延照明器,带有四个安装在滑块中的二向色分光镜,用于紫外、紫光、蓝光和绿光的入射照明。由阿姆斯特丹大学制造(Ploem,1965 年)。
开发二向色分光镜以产生不同波长的激发光具有重要的优势。当时,紫外光谱(约 100 nm - 380 nm)的激发光非常普遍,但却有一个恼人的副作用:自发荧光。很多组织物质都会被紫外线激发,从而产生微弱的背景光(图 5)。通过将二向色镜的反射波长调整到绿色或蓝色范围,Ploem 能够达到当时非常常用的两种荧光染料 FITC(494 纳米)和 TRITC(541 纳米)的激发最大值,而不会产生自发荧光。FITC(异硫氰酸荧光素)和 TRITC(四甲基罗丹明-5(和 6)-异硫氰酸酯)可与抗体耦合,目前仍用于免疫荧光显微镜。通过在较小范围内达到其激发最大值,组织标本的对比度得到了显著增强(图 5)。使用 Ploem 的二向色分光器产生的激发光束能有效地与 FITC 的激发最大值相匹配,即使是发射光谱很差的光源也能使用。
图 5:左图:用宽波段紫外激发光照射标记有免疫标记(FITC)的组织细胞。注意带有蓝色自发荧光的组织结构。右图 使用窄波段蓝光(490 纳米)外延照明,对相同的组织和相同的 FITC 标记进行免疫染色。注意图像对比度的增加(Ploem,1967 年)。
有鉴于此,现在可以利用外延照明的优势,使用普通的高压汞弧光灯提供蓝光和绿光的窄带激发。这一改进满足了生命科学和医学领域对荧光显微镜的需求。
根据 Ploem 的发明,Leitz 设计出了一种新型多波长荧光外延照明器,它带有四个旋转式二向色分光镜,可在紫外、紫光、蓝光和绿光范围内激发标本,这就是 Leitz PLOEMOPAK。
莱茨员工卡夫(W. Kraft)取得了更大的成就,他将二向色分光器与适当的激发和发射滤光器组合在一个工件上,即所谓的滤光器立方体或滤光器块(卡夫,1969 年和卡夫,1972 年)(图 6)。他的研究成果是设计出了一种外延照明器,该照明器带有多组四个这样的滤光器立方体,如今几乎所有的多波长荧光显微镜都是以这些滤光器立方体为基础的。
图 6:左:1970 年左右,Leitz 员工 W. Kraft 将激发滤光片(橙色)、二色分光镜(灰色)和发射滤光片(紫色)集成在一个工件上 - 滤光片立方体。中间:滤光器立方体的工程图。右图 在现代显微镜中,荧光滤光片立方体可以很方便地点入和点出。研究人员甚至可以根据自己的需要,用不同的滤光片和二向色分光器改装一个立方体。
总 结
有了 Ploem 及其同代人和后继者建立起来的技术基础,我们今天就可以通过将适当的滤光器立方体放入外延照明器(图 7),观察到无数不同的荧光团。研究人员甚至可以根据自己的需要定制激发和发射参数。
由于现代研究显微镜的自动化,在实验过程中切换滤光器立方体只需点击一下按钮。科学家们可以在一瞬间切换不同的荧光团,从而观察到即使是活体标本也被荧光标记为不同的荧光团。
图 7:荧光显微镜的演变。左图:透射光荧光显微镜的基本问题是检测激发光。中图 这就是人们利用外延照明并将光源移到显微镜检测侧的原因。这种方法需要二向色分光镜。右图 将激发滤光片、发射滤光片和二向色分光器放在一个区块中,可以快速切换不同的区块,专用于某些荧光团。
参考文献:
1.Brumberg, E. M., Krylova, T. N.: O fluoreschentnykh mikroskopopak. Zh. obshch. biol. 14, 461, 1953.
2.Ploem, J. S.: Die M?glichkeit der Auflichtfluoreszenzmethoden bei Untersuchungen von Zellen in Durchstr?mungskammern und Leightonr?hren. Xth Symposium d. Gesellschaft f. Histochemie, 1965. Acta Histochem. Suppl. 7, 339–343, 1967.
3.Ploem, J. S.: The use of a vertical illuminator with interchangeable dichroic mirrors for Fluorescence microscopy with incident light. Zeitschr. f. wiss. Mikroskopie 68, 129–142, 1967.
4.Kraft, W.: Die Technologie des Fluoreszenzopak, Leitz Mitt. Wiss. u. Techn. IV/6, 239–242, 1969.
5.Kraft, W.: Fluorescence Microscopy and Instrument Requirements. Leitz Mitt. Wiss. u. Techn. V/7, 193–206, 1972.
6.Policard, A., Paillot, A.: Etude de la sécrétion de la soie à I'aide des rayons ultraviolets filtrés (lumière de Wood). Comptes Rendus de l'Académie des Sciences Paris 181, 378–380, 1925.
参加问卷调研,领取精美小礼品!
8月底活动截止
届时答题满分的小伙伴会收到我们的小礼品
问卷答案的答案可以在之前的推文内寻找哦~
徕卡175周年:徕卡品牌的发展历程,也是显微技术的发展史
相关产品
DMi8 S 高速成像平台 倒置显微镜成像解决方案
STELLARIS共聚焦显微镜平台
正置双目生物显微镜 徕卡DM4 B & 徕卡DM6 B
徕卡显微咨询电话:400-630-7761
关于
全部评论(0条)
推荐阅读
-
- 徕卡175周年:入射光荧光显微镜的里程碑
- 徕卡175周年:入射光荧光显微镜的里程碑
-
- 徕卡175周年:体视显微镜的历史
- 19 世纪现代显微镜制造技术的突破
-
- 徕卡175周年:落射荧光显微镜和反射对比显微镜
- 徕卡175周年:落射荧光显微镜和反射对比显微镜
-
- 徕卡倒置荧光显微镜的用处
- 其独特的设计使得样品可以从显微镜下方进行观察,而不是传统显微镜的上方,这一特点不仅提高了样品的稳定性,也提供了更加灵活的操作空间。本文将深入探讨徕卡倒置荧光显微镜的多种应用及其在科研中的重要性,旨在为研究人员和相关行业的专业人士提供系统的了解。
-
- 徕卡175周年:2012年诺贝尔生理学或医学奖——干细胞研究
- 徕卡175周年:2012年诺贝尔生理学或医学奖——干细胞研究
-
- 徕卡175周年:2014年诺贝尔化学奖得主与超高分辨率显微技术
- 徕卡175周年:2014年诺贝尔化学奖得主与超高分辨率显微技术
-
- 徕卡175周年:显微图像分析简史——从电视图像分析仪到集成数字软件解决方案的定量显微技术
- 徕卡175周年:显微图像分析简史——从电视图像分析仪到集成数字软件解决方案的定量显微技术
-
- 全天空成像仪—计算和跟踪太阳的位置,遮挡太阳直射的入射光
- 全天空成像仪是一种现代气象观测与环境监测领域的重要设备,主要用于白天全天空云量的持续自动监测基于可见光的散射原理工作。大气分子和云粒子对可见光的散射特性不同,大气分子对可见光的散射与波长的四次方成反比
-
- 荧光显微镜的组成
- 本文将详细介绍荧光显微镜的主要组成部分,包括光源、滤光片系统、物镜、检测器及其工作原理。了解这些关键组件对于掌握荧光显微镜的使用方法与原理至关重要,也有助于提高实验的准确性和图像的质量。
-
- 全球第二例艾滋病患者成功治愈:医学突破的里程碑
- 埃泽思生物( Applied Cell)总部位于上海,专注于细胞治疗、再生医学等相关领域上游产品的研发与生产,公司产品在细胞与基因治疗、细胞样本存储,药物发现,科学研究等领域有广泛应用。
-
- 荧光显微镜下的轮状病毒
- 点击蓝字 关注我们轮状病毒(Rotavirus,简称RV)是一种双链核糖核酸病毒,属于呼肠孤病毒科。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论