火焰原子吸收光谱法测定铜烟尘物料中低含量铟
01
第一部分:引言
铟在地壳中的分布量比较小,又很分散。在自然界中,铟矿物均以微量的形式分散伴生于其它矿物中,现已发现约有50种矿物中含有铟,其中含铟量最高的矿物是含硫的铅锌矿。同时,锡石、黑钨矿及普通的闪角石也常含较多的铟。它的富矿还没有发现过,只是在锌和其他一些金属矿中作为杂质存在,因此它被列入稀有金属。另外,某些二次资源中含铟较高,如冶炼厂烟尘、富锡渣、钢铁厂烟尘、废ITO靶材等,具有很高的回收价值。
实验的烟尘为艾萨烟尘、电炉烟尘和转炉烟尘及烟尘浸出物料,产出的烟尘主要以挥发元素Pb、As、Bi、Zn为主,且铜含量较低,铟、银、金等含量低。目前,低含量铟测定主要采用原子吸收光谱法,其他样品如矿渣、锑渣、铅冶炼渣、铅锌冶炼物料等中铟测定的文献介绍较多,主要集中在样品的前处理,如王水溶解,氢溴酸与高氯酸发烟驱除砷、锡、锑或乙酸丁酯萃取、盐酸反萃取分离共存元素,以及测定铟条件的研究方面。实验利用硝酸、氯酸钾溶样,在5%硝酸介质中直接测定铟,从而制定了铜烟尘物料中低含量铟的分析方法,用于分析生产样品快速简便,能满足生产要求。
02
2.实验部分
2.1主要仪器与试剂
①原子吸收光谱仪(上海有限公司);
②铟空心阴极灯(北京有色金属研究总院);
③硝酸:分析纯;
④盐酸:分析纯;
⑤氢氟酸:分析纯;
⑥盐酸与氢溴酸混合酸(1+1);
⑦氯酸钾:分析纯;
⑧铟标准贮存溶液(A):称取1.0000g金属铟(质量分数不小于99.99%),置于300mL高型烧杯中,加入50mL硝酸,盖上表面皿,低温溶解至完全,蒸至近干。取下,冷却,用水吹洗表面皿和杯壁,加入25mL硝酸,盖上表面皿,加热微沸至盐类溶解。取下,冷却,用水吹洗表面皿和杯壁,转入1000mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1000μg铟。
铟标准溶液(B):移取10.00mL铟标准贮存溶液于100mL容量瓶中,加入5mL硝酸,用水稀释至刻度,混匀。此溶液1mL含100μg铟。
2.2试验方法
称取0.1000~0.2000g样品于250mL烧杯中,加入0.5g氯酸钾、10mL硝酸,3~4滴氢氟酸加热溶解至近干,加10mL盐酸继续加热溶解至近干,稍冷,加入6mL盐酸继续加热溶解至近干,取下,稍冷,加入5mL盐酸与氢溴酸混合酸(1+1),盖上表面皿,低温加热至近干,重复1~3次,取下,稍冷,加入8mL硝酸,盖上表面皿,低温加热至近干,取下,冷却。吹洗杯壁及表面皿,加5mL硝酸和少量水,加热至盐类溶解,取下,冷却。转入100mL容量瓶中,用水稀释至刻度,摇匀。按仪器工作条件测定其吸光度。推荐仪器工作条件见表1。
03
3.结果与讨论
3.1样品分解方法的选择
实验研究对比了铜烟尘样品的3种溶解方法,测得铟含量见表2。
方法一:王水加热溶解。
称取0.1000~0.2000g样品于250mL烧杯中,加入30mL王水加热溶解至近干,取下,稍冷吹洗杯壁及表面皿,加5mL硝酸和少量水,加热至盐类溶解,取下,冷却。转入100mL容量瓶中,用水稀释至刻度,摇匀。按仪器工作条件测定其吸光度。
方法二:硝酸+氯酸钾加热溶解。
称取0.1000~0.2000g样品于250mL烧杯中,加入0.5g氯酸钾、10mL硝酸加热溶解至近干,加10mL盐酸继续加热溶解至近干,稍冷,加入6mL盐酸继续加热溶解至近干,取下,稍冷吹洗杯壁及表面皿,加5mL硝酸和少量水,加热至盐类溶解,取下,冷却。转入100mL容量瓶中,用水稀释至刻度,摇匀。按仪器工作条件测定其吸光度。
方法三:氢氧化钠熔解。
称取0.1000~0.2000g样品于预先垫有2g氢氧化钠的银坩埚内,覆盖1g氢氧化钠,放入700℃马弗炉内熔融7min,熔融物呈红色透明,取下冷却,将坩埚放在盛有20mL左右热水的300mL烧杯中,并用少量的盐酸和热水洗净坩埚。在不断搅拌下缓慢加入盐酸至全部氢氧化物溶解,并过量2mL,于低温电炉上加热蒸发至近干,加5mL硝酸,水洗表皿及杯壁,加热煮沸使盐类溶解,冷却至室温转入100mL容量瓶中,以水定容,摇匀,用原子吸收光谱仪于303.9nm处测其吸光度。随同做空白。
由表2可知,王水加热溶解样品溶解不完全,测定结果偏低;用硝酸+氯酸钾加热溶解和氢氧化钠熔解测定结果一致,说明两种方法具有一定的可行性,但氢氧化钠熔解法样品分解和处理流程过长,操作繁琐,选择硝酸+氯酸钾加热溶解。
3.2酸介质的选择
分别在不同的硝酸、盐酸介质和不同浓度时,用原子吸收光谱仪测定3μg/mL铟标准溶液的吸光度。实验表明:在盐酸介质中,1%~10%的浓度对铟的吸光度有抑制影响,而在硝酸介质中,1%~10%的浓度对铟的吸光度影响甚小。因此,实验选择硝酸介质和5%浓度。结果见表3。
3.3共存元素的影响
铜冶炼过程产出的烟尘,其中除含铟300~1500g/t外,还含有锡0.5%~2%、铅10%~40%、砷1%~12%、锑1%~4%、铋1.5%~9%、铁0.5%~3%、铜1.0%~30%、锌10%~20%、镉0.5%~1.0%、银100~500g/t、金0.2~1.2g/t等。对2μg/mL铟的吸光度进行测定,测定体积为100mL时,当相对误差小于±4%时,共存离子的允许量为Zn(100mg)、Pb(100mg)、Sn(3mg)、As(15mg)、Sb(5mg)、Bi(10mg)、Fe(5mg)、Cu(50mg)、Cd(2mg)、
Ag(1mg)、Au(1mg)、Ca(2mg)、Mg(2mg)、Ni(1mg)、Si(1mg),根据样品成分各元素的含量不干扰铟的测定。根据实验方法进行实验,在测定体积100mL时,共存离子的允许量均已超过实际样品中的存在量,但考虑到方法的广泛性和适用性,加盐酸与氢溴酸混合酸(1+1)排高锡、锑的干扰。
04
4.样品分析
4.1标准工作曲线绘制
分别移取B标准液0mL,1mL,2mL,3mL,4mL于100mL容量瓶中,加5mL硝酸,用水稀释至刻度,摇匀。此溶液浓度分别为0μg/mL,1μg/mL,2μg/mL,3μg/mL,4μg/mL。在与试样相同的测定条件下测定系列标准的吸光度,以铟浓度为横坐标,吸光度为纵坐标,绘制工作曲线。其工作曲线如图1所示。
4.2精密度实验
按分析步骤对样品进行了11次独立结果用平行试样法检验方法的精密度,见表4。结果表明,此法测定结果的重新性能满足生产需要。
4.3准确度实验
称取一定量的试样,在不同含量样品中加入不同含量的铟标准溶液,按样品的分析步骤处理并测定,见表5。结果表明,样品加标回收率为96.0%~103.5%,满足实际生产要求。
4.4结果对照
将两个烟尘样品送去外检,得到结果见表6。
05
通过实验,样品用硝酸、氯酸钾溶解,在5%的硝酸介质中,于波长303.9nm处用原子吸收光谱仪测定。并采用标准加入法测定,试验结果表明,回收率在96.0%~103.5%之间,回收率较高,精密度好,能满足实际生产要求。
方法来源:[1]孔凡丽,胡花苗,李艳萍,等.火焰原子吸收光谱法测定铜烟尘物料中低含量铟[J].云南冶金,2018,47(04):87-90.
06
上海有限公司(以下简称美析),是一家具有自主知识产权的高新技术企业,美析的创业理念“科技——因你改变”,并以此为企业宗旨,不断探究、果敢创新。特别是在分析测试仪器领域,不断开发出先进的产品,使美析成为优质仪器资源的供应者。
美析主营光谱类仪器:可见分光光度计、紫外可见分光光度计、原子吸收光谱仪、原子荧光光度计、ICP-AES、ICP-MS,生命科学仪器:超微量分光光度计、全自动核酸提取仪,目前,我们的产品已广泛应用于有机化学、无机化学、生物化学、医药、环保、冶金、石油、农业等领域。同时美析利用在产品机械结构、光学设计、电气应用和软件开发方面积累的丰富经验,结合市场的实际需求,近期将陆续推出一批分析类仪器。
美析非常重视人才的引进和培养,人的因素是一个企业可持续发展的核心因素,所以美析充分尊重每一位员工,做到真正的“共建平台,实现自我”。为此美析建立了强大的培训团队,对在职员工进行荃方位的培训,帮助员工制定职业生涯规划,以期公司和员工共同发展。同时美析以“家庭、敬业、学习”的职业操守启迪着员工,每一个美析人都以饱满的热情和专业的技能完,美呈现每一台仪器、服务每一位客户。对人才的重视和尊重使公司的各个环节都充满着严谨和激情,全新的设计理念、对高精度高参数的苛刻要求、应用范围的持续延伸,所有这些都在我们的产品先进性上得到了完mei呈现;从原材料的严格验收,到各工艺流程的标准流水线作业,再到质检部门的严格出厂检测,美析人对生产各环节的苛刻要求使得公司建立起一套完善的过程质量控制系统,并在仪器的质量上得到有力体现。也因此使我们的产品受到国内外用户的一致好评。
美析的总部及生产基地设在上海,营销中心设在北京,并在上海、北京、江苏三地建有研发基地。为充分利用各地的智力资源,美析与国内外的部分科研单位也进行了深层次的科研合作,不断将科研成果转化为生产力。为更好的服务于广大客户,国内设有12家办事机构,度身定制符合您需求的应用解决方案,提高产品的附加值。在不断服务国内用户的同时,美析也与20多个国家的分销机构建立了深度的战略合作关系。
伴随着美析跻身全球品牌仪器行列步伐的加快,美析对自身的要求不断提高,同时我们也希望能得到社会各界的关爱和支持,让我们携手共同展望。科技,必将因你我而改变。
了解更多内容请关注
我公司微信公众号:
全部评论(0条)
推荐阅读
-
- 火焰原子吸收光谱法测定铜烟尘物料中低含量铟
- 铟在地壳中的分布量比较小,又很分散。在自然界中,铟矿物均以微量的形式分散伴生于其它矿物中,现已发现约有50种矿物中含有铟,其中含铟量最高的矿物是含硫的铅锌矿。
-
- 应用方案 | 原子吸收光谱法测定水中铅、镉含量
- 应用方向:原子吸收、重金属、环境安全
-
- 酸脱蛋白-石墨炉原子吸收光谱法测定血中铅含量
- 酸脱蛋白-石墨炉原子吸收光谱法测定血中铅含量
-
- 应用方案 | 原子吸收光谱法测定医疗耗材 (牙科)中的元素含量
- 应用方向:原子吸收、牙科医疗、元素含量
-
- 电位滴定法测定铜精矿中铜的含量
- 电位滴定法测定铜精矿中铜的含量
-
- 应用方案 | 原子吸收光谱法测定无磷无钠水处理剂中 Fe、Ca、Mg、Si 元素含量
- 应用方向:原子吸收、水处理、无磷无钠水处理剂
-
- 原子分光光度计的火焰作用
- 火焰在原子分光光度计中的作用不可忽视,其性能直接影响到分析结果的准确性和可靠性。从原子化、稳定环境到激发光谱信号,火焰为整个检测过程提供了不可或缺的支持。通过科学地优化火焰使用。
-
- 原子吸收光谱仪图片,原子吸收光谱技术原理
- 原子吸收光谱仪是一种精确、高效的分析工具,广泛应用于环境保护、食品安全、生命科学等多个领域。通过其高度灵敏的元素检测能力,科研人员和工程技术人员能够获得准确的分析数据。
-
- 火焰切割机烟尘净化设备-节能省电
- 火焰切割机烟尘净化设备-节能省电
-
- 电感耦合等离子体原子发射光谱法测定甲醇中钠镁钾钙铁铜锌
- 移取50.00mL甲醇样品置于250mL聚四氟乙烯烧杯中,在65℃水浴中蒸发zhi干,加入1+1硝酸2mL加热溶解,冷却后用超纯水吹洗烧杯内表面,溶解盐类,转移到50mL塑料容量瓶中,用超纯水定容zhi刻度,摇匀。
-
- 高频红外吸收法测定铜中硫含量
- 高频红外吸收法测定铜中硫含量
-
- PicoQuant公司:探索铜铟镓硒(CIGS)太阳能电池技术,引领绿色能源革新
- 铜铟镓硒(?CIGS)?薄膜太阳能电池具有生产成本低、污染小、不衰退、弱光性能好等显著特点,光电转换效率居各种薄膜太阳电池之首,接近于晶体硅太阳电池,而成本只是它的三分之一,被称为下一代非常有前途的新型薄膜太阳电池。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论