名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光等离子体光谱在核材料安全查证和定量分析中的应用
随着科技的飞速发展,光电应用与材料领域正不断涌现出令人瞩目的新知识和技术与新应用,为响应国家号召,作为光电行业的领军企业,北京仪器有限公司积极承担社会责任,特别策划并推出《名家专栏》系列技术与应用新闻专栏,该专栏汇聚激光物理、拉曼光谱、等离子体、电化学、量子理论及激光诱导击穿光谱及光色测量等多领域系列,深入剖析前沿科技,为读者带来专业而丰富的知识盛宴,为广大科研工作者提供一个交流与学习的平台。
图1. LIPS装置和原理示意图(来自网络)
目前,实验室LIPS技术在核材料化学元素成分和核素成分分析方面已经取得了良好的效果。在实验室条件下,LIPS可以使用高性能激光设备,合适的气体环境和高分辨率、高响应效率的光谱仪进行检测,以获得最佳的光谱分析结果。对于铀矿石、黄饼、核燃料、裂变产物、乏燃料等不同样品,在实验室条件下,铀、钍、钚、铈、铯、锶等关键元素和锂、镁、锰、钠等杂质元素都能通过LIPS得到量化[1]。在这些LIPS定量工作中,包括外部标准化和内部标准化等经典的定标方法以及支持向量机(SVM)和人工神经网络(ANN)等机器学习方法都得到了应用[2]。核材料分析中比较在意的同位素比率,可以通过LIPS根据原子发射光谱的同位素位移进行区分和分析。这种同位素位移通常非常小,一般需要在实验室条件下通过高分辨率光谱仪和合适的实验条件(较长的延迟时间和较低的压力环境)才能进行检测。目前,铀、钚等元素的同位素可以通过LIPS进行分辨,并用于同位素比率的简单预测[3–5]。
图2. 424.437 nm U II 同位素特征谱线 (Applied Spectroscopy, 66(3): 250-261, 2012)
核安保是确保核能和平、安全利用的关键环节,对国家安全具有重要意义。核安保涉及多个环节和程序的复杂过程,应对核走私和恐怖主义威胁,打击涉核材料的非法转移是核安保工作的重要任务。查获涉核材料只是第一步,获取其放射性、物理特性和同位素、元素成分等特征信息以进行溯源是核安保工作的重要内容。目前对于元素成分的现场非破坏分析,还没有成熟的解决方案。现有元素成分分析技术大多需要样品预处理,难以开展无损分析,并且无法在第一时间提供可疑材料的元素成分信息。
LIPS具有原位、快速、非接触和设备可便携等优势,可以用于元素成分的现场快速识别,国际原子能机构(IAEA)因此将其列为核安保领域建议发展的新型无损检测技术,并协调成员国开展了相关技术的研究和验证[6]。据报道,2010年左右,美国洛斯阿拉莫斯实验室开发的背负式激光光谱探测系统已用于矿石和金属样品中的铀成份探测,对铀元素的探测灵敏度达到450 PPM[7]。2014年在国际原子能机构组织的黄饼及铀氧化物现场甄别测试中,加拿大提供的NRC-IMI装置成功地识别并区分出74种不同来源核黄饼[8]。据悉,加拿大已成功地向国际原子能机构提供了该款便携式LIPS应用装备。2020年,我们团队研制了一种便携式核材料激光甄别装置[9],该装置能识别铀、钍、钚等18种元素,其中对铀的探测灵敏度达到几十PPM。
图3. 美国洛斯阿拉莫斯实验室(左)和加拿大NRC(右)研发的激光光谱应用装备(IAEA Symposium on International Safeguards, Vienna, 2010 ; IAEA Symposium on International Safeguards, Vienna, 2014)
图4. 中国原子能科学研究院研制的便携式核材料激光甄别装置
核材料元素成分的原位定量存在一定难度,特别是对于核安保的现场取证,待分析样本往往是随机的,其成分未知,这就对分析技术提出了更高的要求。常规的LIPS定标方法依赖于标准样品,并且受到基质效应的影响,在面对未知成分的样本时难以实现准确的定量分析。因而国内外都在积极探索新的定量方法,比如机器学习算法等。
在LIPS定量方法中,有一种免定标方法(Calibration-Free LIPS,CF-LIPS/ CF-LIBS)[10]。这种方法在无需依赖标准样品的情况下,通过直接分析LIPS光谱和特征谱线原子参数,能够计算得到等离子体特征参数和元素组成。该方法能够有效避免基质效应的影响,在复杂的样品背景下,仍能保持较高的可靠性,对于不明核材料的现场定量取证具有显著的优势。我们团队今年发展了基于CF-LIPS的涉核材料定量技术。通过提出统一温度的CF-LIPS新方法并建立光谱分析程序,该技术实现了LIPS现场原位的高效快速定量,一次光谱的定量计算耗时在数秒之内。该技术已应用于铀矿石和不明核燃料的成分定量测试中,为核安保领域提供了一种全新的、高效的现场检测手段。
图5. 铀矿石粉末压片(左)和核燃料碎片(右)样品
图6. 铀矿石粉末压片(左)和核燃料碎片(右)的CF-LIPS元素分析结果
[1] Wu J, Qiu Y, Li X, et al. Progress of laser-induced breakdown spectroscopy in nuclear industry applications[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 023001.
[2] Sarkar A, Mukherjee S, Singh M. Determination of the uranium elemental concentration in molten salt fuel using laser-induced breakdown spectroscopy with partial least squares-artificial neural network hybrid models[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 187: 106329.
[3] Smith C A, Martinez M A, Veirs D K, et al. Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(5): 929-937.
[4] Cremers D A, Beddingfield A, Smithwick R, et al. Monitoring Uranium, Hydrogen, and Lithium and Their Isotopes Using a Compact Laser-Induced Breakdown Spectroscopy (LIBS) Probe and High-Resolution Spectrometer[J]. Applied Spectroscopy, 2012, 66(3): 250-261.
[5] Chan G C Y, Martin L R, Trowbridge L D, et al. Analytical characterization of laser induced plasmas towards uranium isotopic analysis in gaseous uranium hexafluoride[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 176: 106036.
[6] Annese C, Monteith A, Whichello J. Novel Technologies for IAEA Safeguards[C]//JAEA-IAEA Workshop on Advanced Safeguards Technology for the Future Nuclear Fuel Cycle, Tokai, Japan. 2007.
[7] Barefield I, Clegg S M, Lopez L N, et al. Application of laser induced breakdown spectroscopy (LIBS) instrumentation for international safeguards[R]. Vienna: Los Alamos National Lab (LANL), 2010.
[8] Chen S, El-Jaby A, Doucet F, et al. Development of Laser-Induced Breakdown Spectroscopy Technologies for Nuclear Safeguards and Forensic Applications[R]. Vienna: International Atomic Energy Agency (IAEA), 2015: 444.
[9] He Y, Hu F, Gao Z, et al. Identification of nuclear materials using portable laser-induced plasma spectroscopy[C]//Liu D, Feng Y, Yang Z. AOPC 2023: Optical Spectroscopy and Imaging; and Atmospheric and Environmental Optics. Beijing, China: SPIE, 2023: 15.
[10] Ciucci A, Palleschi V, Rastelli S, et al. CF-LIPS: A new approach to LIPS spectra analysis[J]. Laser and Particle Beams, 1999, 17(4): 793-797.
高智星
研究员,主要从事激光与物质相互作用、激光等离子体光谱研究。参与并负责科技部、装备发展部多项科技发展项目。相关工作发表论文20余篇,授权专利10余项,担任Matter and Radiation at Extremes等期刊审稿人。
激光诱导击穿光谱(LIBS)测试系统
NAP系列气浮隔振光学平台
LSxxX.lab.O/R系列压电纳米线性位移台
Omni-λ750i系列“影像谱王”光栅单色仪/光谱仪
高性能光谱CCD相机
IsCMOS像增强型相机
免责说明
公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者所有。如有侵权之处,请与我们联系处理。同时,我们也热忱欢迎您投稿并发表您的见解观点。
【名家专栏】 激光等离子体光谱技术及其在核科学中的应用
【人物专访】华中科技大学郭连波教授:激光诱导击穿光谱(LIBS)技术的探索者
【热点应用】IsCOMS相机和光谱仪在LIBS中的应用
全部评论(0条)
推荐阅读
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光等离子体光谱在核材料安全查证和定量分析中的应用
- 应用方向:LIPS,LIBS,核材料,核安保
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光诱导等离子体光谱增强技术
- 应用方向:激光等离子体光谱技术,增强LIBS,元素分析
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光诱导等离子体光谱元素分布成像技术
- 应用方向:元素分布成像,LIBS,原子光谱
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列:激光诱导等离子体光谱元素分布成像技术
- 应用方向:元素分布成像,LIBS,原子光谱
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列:激光等离子体光谱技术及其在核科学中的应用
- 中国原子能科学研究院高智星研究员及其团队解决激光等离子体光谱技术基本原理、发展现状与前沿应用等。
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光等离子体光谱技术及其在核科学中的应用
- 应用方向:LIBS,和材料,LIPS,激光等离子体光谱技术
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光诱导等离子体光谱技术在放射性污染物监测中的应用
- 应用方向:激光等离子体光谱技术,核污染,核安全,放射性污染物
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列:激光诱导等离子体光谱技术在放射性污染物监测中的应用
- 应用方向:激光等离子体光谱技术,核污染,核安全,放射性污染物
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光诱导等离子体光谱技术在液体检测领域的应用
- 应用方向:激光诱导等离子体光谱、液体检测、光谱仪、探测器
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列——激光诱导等离子体光谱技术在铀矿探测领域的应用
- 应用方向:激光等离子体光谱技术(LIPS),铀矿,核能
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列:分享激光诱导等离子体光谱技术在铀矿探测领域的应用
- 应用方向:激光等离子体光谱技术(LIPS),铀矿,核能
-
- 名家专栏 | 激光等离子体光谱技术(LIPS)系列:气溶胶成份的激光等离子体光谱现场实时连续监测
- 应用方向:LIBS,核污染,气溶胶、雾霾
-
- 名家专栏 | 激光等离子体光谱技术(LIP)系列——气溶胶成份的激光等离子体光谱现场实时连续监测
- 应用方向:LIBS,核污染,气溶胶、雾霾
-
- 名家专栏 | 中国原子能科学研究院专家为您解读激光等离子体光谱技术(LIPS)
- 《名家专栏》激光等离子体光谱技术(LIPS)系列专栏第六篇文章,邀请中国原子能科学研究院高智星研究员、王远航老师及其团队,对几种激光诱导等离子体光谱增强技术进行全面介绍。
-
- 激光等离子体光谱法在核材料安全监测与定量分析中的应用探讨
- 《《名家专栏》激光等离子体光谱技术(LIPS)系列专栏第二篇文章,邀请中国原子能科学研究院高智星研究员及其团队,分享LIPS在核材料的检测分析和安全查证等领域的应用前景。
-
- 激光等离子体光谱技术在气溶胶成分分析中的实时应用
- 激光诱导等离子体光谱技术(LIPS)亦称激光诱导击穿光谱技术(LIBS),它利用激光击穿产生等离子体,并根据元素特征光谱的波长和强度分析样品的元素种类和含量,在核材料、气溶胶、放射性污染物、矿物探测等
-
- 探秘核污监测利器:激光诱导等离子体光谱
- 《名家专栏》激光等离子体光谱技术(LIPS)系列专栏第七篇文章,邀请中国原子能科学研究院高智星研究员、王远航老师及其团队,分享激光诱导等离子体光谱技术在放射性污染物监测中应用。
-
- 激光等离子体光谱技术在核物理实验中的精准应用探索
- 激光等离子体光谱技术及其在核科学中的应用激光诱导等离子体光谱技术(LIPS, 又称激光诱导击穿光谱, LIBS)是一种原子发射光谱分析技术。
-
- 激光诱导等离子体光谱技术在液体成分分析中的最新应用
- 激光诱导等离子体光谱(laser-induced plasma spectroscopy, LIPS)技术是一种原子光谱分析技术,该技术通过将高能激光脉冲直接聚焦于样品,
-
- 应用案例 | 探秘激光诱导等离子体光谱元素分布成像技术
- 《名家专栏》激光等离子体光谱技术(LIPS)系列专栏第五篇文章,邀请中国原子能科学研究院高智星研究员、王远航老师及其团队,分享激光诱导等离子体光谱元素分布成像技术的系统组成、性能特点及应用前景等内容。
①本文由仪器网入驻的作者或注册的会员撰写并发布,观点仅代表作者本人,不代表仪器网立场。若内容侵犯到您的合法权益,请及时告诉,我们立即通知作者,并马上删除。
②凡本网注明"来源:仪器网"的所有作品,版权均属于仪器网,转载时须经本网同意,并请注明仪器网(www.yiqi.com)。
③本网转载并注明来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
④若本站内容侵犯到您的合法权益,请及时告诉,我们马上修改或删除。邮箱:hezou_yiqi
参与评论
登录后参与评论